【项目实战】图像隐写的四种方法:LSB替换、LSB匹配、Jsteg与F5隐写(原生代码实现,非第三方库)

图像隐写的四种方法:LSB替换、LSB匹配、Jsteg与F5隐写

隐写技术是信息安全领域的重要手段之一,其目的是将秘密信息隐藏在其他媒介中而不引起察觉。本篇博客将通过代码示例详细介绍图像隐写的四种方法:LSB替换、LSB匹配、Jsteg和F5隐写。

图像隐写概述

隐写术是一种通过在载体数据中嵌入秘密信息的技术。与加密不同,隐写的重点是隐藏存在的痕迹,让外界难以察觉信息的存在。本文中的代码展示了如何使用不同的隐写技术将秘密信息嵌入到图像中。

什么是LSB隐写?

LSB(Least Significant Bit)隐写是最常见的图像隐写技术之一,它通过替换图像中每个像素的最低有效位来嵌入信息。这种方法的优点是实现简单,隐蔽性较好,嵌入后的图像与原图几乎没有区别。

本文展示的代码中实现了两种LSB隐写技术:

  • LSB替换(LSB Replace):直接将秘密信息的二进制位替换图像像素中最低有效位。
  • LSB匹配(LSB Match):通过一定的随机性选择直接替换或调整像素值,以使最低有效位与秘密信息匹配。

高级隐写方法:Jsteg与F5

除了LSB隐写外,本文还实现了两种基于JPEG压缩特性的隐写方法:

  • Jsteg隐写:通过修改JPEG量化后的离散余弦变换(DCT)系数实现隐写。
  • F5隐写:Jsteg的改进方法,通过随机打乱DCT块的顺序,提高信息嵌入的安全性。

LSB替换实现详解

在LSB替换中,我们将秘密信息转换为二进制字符串,并遍历图像中的每个像素,将秘密信息逐一嵌入像素的最低有效位。

代码实现如下:

# LSB替换方法
def lsb_replace(image, secret_message):
    # 将秘密信息转换为二进制字符串
    secret_bits = ''.join(format(ord(char), '08b') for char in secret_message)
    # 将图像转换为numpy数组
    img_array = np.array(image)
    rows, cols, _ = img_array.shape
    bit_idx = 0
    # 遍历图像中的像素,将秘密信息嵌入最低有效位
    for row in range(rows):
        for col in range(cols):
            pixel = img_array[row, col]
            for channel in range(3):
                if bit_idx < len(secret_bits):
                    # 修改最低有效位为秘密信息中的一位
                    pixel[channel] = (pixel[channel] & ~1) | int(secret_bits[bit_idx])
                    bit_idx += 1
                else:
                    break
    encoded_image = Image.fromarray(img_array)
    return encoded_image

在这里,我们首先将秘密信息转换为二进制表示形式。然后遍历图像中的每个像素,将信息嵌入到每个通道的最低有效位。最终得到嵌入信息后的图像。

LSB匹配方法

LSB匹配在LSB替换的基础上增加了一些随机性,以提高抵御统计分析的能力。具体实现如下:

# LSB匹配方法
def lsb_match(image, secret_message):
    secret_bits = ''.join(format(ord(char), '08b') for char in secret_message)
    img_array = np.array(image)
    rows, cols, _ = img_array.shape
    bit_idx = 0
    for row in range(rows):
        for col in range(cols):
            pixel = img_array[row, col]
            for channel in range(3):
                if bit_idx < len(secret_bits):
                    # 随机选择是直接替换还是匹配
                    if (pixel[channel] % 2) != int(secret_bits[bit_idx]):
                        # 如果最低有效位不匹配,则加1或减1以匹配
                        if pixel[channel] == 0:
                            pixel[channel] += 1
                        else:
                            pixel[channel] -= 1
                    bit_idx += 1
                else:
                    break
    encoded_image = Image.fromarray(img_array)
    return encoded_image

这种方法在最低有效位不匹配的情况下,通过对像素值进行加减1的操作来使其匹配,从而达到嵌入信息的目的。

Jsteg隐写方法

Jsteg通过直接修改JPEG图像的DCT量化系数来实现隐写。步骤包括:将图像转换为YUV色彩空间,对Y通道进行分块并进行DCT变换,然后在量化系数中嵌入秘密信息。

# Jsteg方法
def jsteg_hide(image_data, secret_message):
    secret_bits = ''.join(format(ord(char), '08b') for char in secret_message)
    yuv_image = cv2.cvtColor(image_data, cv2.COLOR_BGR2YCrCb)
    y_channel, u_channel, v_channel = cv2.split(yuv_image)
    h, w = y_channel.shape
    block_size = 8
    bit_idx = 0
    quantization_matrix = np.array([...])  # 省略部分代码
    for i in range(0, h, block_size):
        for j in range(0, w, block_size):
            block = y_channel[i:i+block_size, j:j+block_size]
            if block.shape == (block_size, block_size):
                dct_block = cv2.dct(block.astype(np.float32))
                dct_block = np.round(dct_block / quantization_matrix)
                # 嵌入秘密信息
                for x in range(1, block_size):
                    for y in range(1, block_size):
                        if bit_idx < len(secret_bits) and dct_block[x, y] != 0 and dct_block[x, y] != 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若北辰

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值