BZOJ 1458 士兵占领 Dinic最大流

29 篇文章 0 订阅

题目大意:给定一个m*n的棋盘,其中k个点有障碍,要求放置最少的士兵,使第i行有至少L[i]个,第j列有至少C[j]个

首先这种问题很明显的网络流 但是正图肯定是跑不了 限制条件是至少而且要求放置的也是最少 很难解决

反向考虑 将棋盘上先放满士兵 此时若不能满足条件则无解 然后求最多能撤掉多少个士兵 其中第i行最多撤去templ[i]-l[i]个士兵 templ[i]表示第i行当前放置的士兵个数

尼玛我的网络流是多久不写了……居然没连反向弧就跑样例……最逗的是数组开小一倍不报RE报WA……

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 110
#define s 0
#define t (m+n+1)
#define INF 0x3f3f3f3f
using namespace std;
struct abcd{
    int to,f,next;
}table[M*M<<1];
int head[M+M],tot=1;
int m,n,k,ans;
int l[M],c[M];
int templ[M],tempc[M];
bool ban[M][M];
int d[M+M];
void Add(int x,int y,int z)
{
    table[++tot].to=y;
    table[tot].f=z;
    table[tot].next=head[x];
    head[x]=tot;
}
bool BFS()
{
    int i;
    static int q[65540];
    static unsigned short r,h;
    r=h=0;
    memset(d,-1,sizeof d);
    d[s]=0;q[++r]=s;
    while(r!=h)
    {
        int x=q[++h];
        for(i=head[x];i;i=table[i].next)
            if(table[i].f)
            {
                if(~d[table[i].to])
                    continue;
                d[table[i].to]=d[x]+1;
                q[++r]=table[i].to;
                if(table[i].to==t)
                    return true;
            }
    }
    return false;
}
int Dinic(int x,int flow)
{
    int i,left=flow;
    if(x==t)
        return flow;
    for(i=head[x];i&&left;i=table[i].next)
        if(table[i].f&&d[table[i].to]==d[x]+1)
        {
            int temp=Dinic(table[i].to,min(left,table[i].f));
            if(!temp) d[table[i].to]=-1;
            left-=temp;
            table[i].f-=temp;
            table[i^1].f+=temp;
        }
    return flow-left;
}
int main()
{
    int i,j,x,y;
    cin>>m>>n>>k;
    for(i=1;i<=m;i++)
        scanf("%d",&l[i]),templ[i]=n;
    for(i=1;i<=n;i++)
        scanf("%d",&c[i]),tempc[i]=m;
    for(i=1;i<=k;i++)
    {
        scanf("%d%d",&x,&y);
        if(--templ[x]<l[x])
        {
            puts("JIONG!");
            return 0;
        }
        if(--tempc[y]<c[y])
        {
            puts("JIONG!");
            return 0;
        }
        ban[x][y]=true;
    }
    ans=m*n-k;
    for(i=1;i<=m;i++)
        for(j=1;j<=n;j++)
            if(!ban[i][j])
                Add(i,m+j,1),Add(m+j,i,0);
    for(i=1;i<=m;i++)
        Add(s,i,templ[i]-l[i]),Add(i,s,0);
    for(i=1;i<=n;i++)
        Add(m+i,t,tempc[i]-c[i]),Add(t,m+i,0);
    while( BFS() )
        ans-=Dinic(s,INF);
    cout<<ans<<endl;    
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值