BZOJ 3786 星系探索 DFS序+Splay

11 篇文章 0 订阅
667 篇文章 1 订阅

题目大意:给定一棵有根树,提供下列操作:

1.询问某个点到根路径上的点权和

2.修改某个点的父亲,保证修改之后仍然是一棵树

3.将某个点所在子树的所有点权加上一个值

子树修改,LCT明显是搞不了了,在想究竟会不会有人去写自适应Top-Tree……

首先我们DFS搞出这棵树的入栈出栈序 然后入栈为正出栈为负

那么一个点到根的路径上的点权和就是从根节点的入栈位置到这个点的入栈位置的和

子树修改就记录某段序列中有多少入栈和多少出栈,然后根据这个对这棵子树所在序列修改即可

那么换父亲操作呢?显然可以用Splay来维护入栈出栈序 将某棵子树所在序列整体移动即可

题还没出来我这题解已经写完了 又强又厉害啊

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 100100
using namespace std;
typedef long long ll;
struct abcd{
    abcd *ls,*rs,*fa;
    ll num,sum;
    int sta,pos,neg;
    ll add_mark;
    abcd (ll x,int _sta);
    void Push_Up();
    void Push_Down();
    void Add(ll x);
}*null=new abcd(0,0),*root,*tree[M][2];
struct edge{
    int to,next;
}table[M];
int head[M],tot;
int n,m;
int a[M];
abcd :: abcd(ll x,int _sta)
{
    ls=rs=fa=null;
    num=sum=x*(_sta==1?1:-1);
    sta=_sta;
    pos=neg=0;
    if(sta==1) pos++;
    if(sta==2) neg++;
    add_mark=0;
}
void abcd :: Push_Up()
{
    sum=ls->sum+rs->sum+num;
    pos=ls->pos+rs->pos+(sta==1);
    neg=ls->neg+rs->neg+(sta==2);
}
void abcd :: Push_Down()
{
    if(add_mark)
    {
        ls->Add(add_mark);
        rs->Add(add_mark);
        add_mark=0;
    }
}
void abcd :: Add(ll x)
{
    if(this==null)
        return ;
    num+=x*(sta==1?1:-1);
    sum+=x*(pos-neg);
    add_mark+=x;
}
void Push_Down(abcd *x)
{
    static abcd *stack[M<<1];
    static int top=0;
    for(;x!=null;x=x->fa)
        stack[++top]=x;
    while(top)
        stack[top--]->Push_Down();
 
}
void Zig(abcd *x)
{
    abcd *y=x->fa;
    y->ls=x->rs;
    x->rs->fa=y;
    x->rs=y;
    x->fa=y->fa;
    if(y->fa->ls==y)
        y->fa->ls=x;
    else
        y->fa->rs=x;
    y->fa=x;
    y->Push_Up();
    if(root==y)
        root=x;
}
void Zag(abcd *x)
{
    abcd *y=x->fa;
    y->rs=x->ls;
    x->ls->fa=y;
    x->ls=y;
    x->fa=y->fa;
    if(y->fa->ls==y)
        y->fa->ls=x;
    else
        y->fa->rs=x;
    y->fa=x;
    y->Push_Up();
    if(root==y)
        root=x;
}
void Splay(abcd *x,abcd *tar)
{
    Push_Down(x);
    while(1)
    {
        abcd *y=x->fa,*z=y->fa;
        if(y==tar) break;
        if(z==tar)
        {
            if(x==y->ls) Zig(x);
            else Zag(x);
            break;
        }
        if(x==y->ls)
        {
            if(y==z->ls)
                Zig(y);
            Zig(x);
        }
        else
        {
            if(y==z->rs)
                Zag(y);
            Zag(x);
        }
    }
    x->Push_Up();
}
abcd* Insert(ll x,int _sta)
{
    abcd *y=root;
    while(y->rs!=null)
        y=y->rs;
    y->rs=new abcd(x,_sta);
    y->rs->fa=y;
    y->Push_Up();
    Splay(y->rs,null);
    return root;
}
abcd* Find_Min(abcd *x)
{
    while(x->ls!=null)
        x=x->ls;
    return x;
}
abcd* Find_Max(abcd *x)
{
    while(x->rs!=null)
        x=x->rs;
    return x;
}
void Move_To_Root(abcd *x,abcd *y)
{
    Splay(x,null);
    abcd *temp1=Find_Max(root->ls);
    Splay(y,null);
    abcd *temp2=Find_Min(root->rs);
    Splay(temp1,null);
    Splay(temp2,root);
}
void Add(int x,int y)
{
    table[++tot].to=y;
    table[tot].next=head[x];
    head[x]=tot;
}
void DFS(int x)
{
    int i;
    tree[x][0]=Insert(a[x],1);
    for(i=head[x];i;i=table[i].next)
        DFS(table[i].to);
    tree[x][1]=Insert(a[x],2);
}
int main()
{
    int i,x,y;
    char p[10];
    cin>>n;
    for(i=2;i<=n;i++)
        scanf("%d",&x),Add(x,i);
    for(i=1;i<=n;i++)
        scanf("%d",&a[i]);
    root=new abcd(19980402,3);
    DFS(1);
    Insert(19980402,4);
    cin>>m;
    for(i=1;i<=m;i++)
    {
        scanf("%s",p);
        switch(p[0])
        {
            case 'Q':
                scanf("%d",&x);
                Move_To_Root(tree[1][0],tree[x][0]);
                printf("%lld\n",root->rs->ls->sum);
                break;
            case 'C':
                {
                    scanf("%d%d",&x,&y);
                    Move_To_Root(tree[x][0],tree[x][1]);
                    abcd *temp=root->rs->ls;
                    root->rs->ls=null;
                    root->rs->Push_Up();
                    root->Push_Up();
                    Splay(tree[y][0],null);
                    Splay(Find_Min(root->rs),root);
                    root->rs->ls=temp;
                    temp->fa=root->rs;
                    root->rs->Push_Up();
                    root->Push_Up();
                    break;
                }
            case 'F':
                scanf("%d%d",&x,&y);
                Move_To_Root(tree[x][0],tree[x][1]);
                root->rs->ls->Add(y);
                break;
        }
    }
}


  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PoPoQQQ

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值