BZOJ 1433 ZJOI2009 假期的宿舍 最大流

29 篇文章 0 订阅

题目大意:给定一些人,有些人是在校学生,有些去学校探访,在校学生有些回家,一个人只能睡认识的人的床,求能不能睡下

二分图的模型,左侧是所有需要睡觉的人,右侧是所有能用的床铺,二分图最大匹配即可

嫌建图麻烦可以考虑最大流

一个点拆成两个

如果这个人需要睡床,从原点出发向这个人的第一个点连边

如果这个人是在校学生,从这个人的第二个点向汇点连边

如果i==j或者i和j认识,从i的第一个点出发向j的第二个点连边

跑最大流判断是否满流即可

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 110
#define INF 0x3f3f3f3f
#define S 0
#define T (n+n+1)
using namespace std;
struct abcd{
	int to,f,next;
}table[100100];
int head[M],tot=1;
int n,ans,at_school[M],go_home[M];
void Initialize()
{
	memset(head,0,sizeof head);
	tot=1;ans=0;
}
void Add(int x,int y,int z)
{
	table[++tot].to=y;
	table[tot].f=z;
	table[tot].next=head[x];
	head[x]=tot;
}
void Link(int x,int y,int z)
{
	Add(x,y,z);
	Add(y,x,0);
}
namespace Max_Flow{
	int dpt[M];
	bool BFS()
	{
		static int q[M];
		int i,r=0,h=0;
		memset(dpt,-1,sizeof dpt);
		q[++r]=S;dpt[S]=1;
		while(r!=h)
		{
			int x=q[++h];
			for(i=head[x];i;i=table[i].next)
				if(table[i].f&&!~dpt[table[i].to])
				{
					dpt[table[i].to]=dpt[x]+1;
					q[++r]=table[i].to;
					if(table[i].to==T)
						return true;
				}
		}
		return false;
	}
	int Dinic(int x,int flow)
	{
		int i,left=flow;
		if(x==T) return flow;
		for(i=head[x];i&&left;i=table[i].next)
			if(table[i].f&&dpt[table[i].to]==dpt[x]+1)
			{
				int temp=Dinic(table[i].to,min(left,table[i].f) );
				if(!temp) dpt[table[i].to]=-1;
				left-=temp;
				table[i].f-=temp;
				table[i^1].f+=temp;
			}
		return flow-left;
	}
}
int main()
{
	int cases,i,j,x;
	for(cin>>cases;cases;cases--)
	{
		Initialize();
		cin>>n;
		for(i=1;i<=n;i++)
		{
			scanf("%d",&at_school[i]);
			if(at_school[i]) Link(n+i,T,1);
		}
		for(i=1;i<=n;i++)
		{
			scanf("%d",&go_home[i]);
			if(!at_school[i]||!go_home[i])
				Link(S,i,1),++ans;
		}
		for(i=1;i<=n;i++)
			for(j=1;j<=n;j++)
			{
				scanf("%d",&x);
				if(x||i==j) Link(i,j+n,1);
			}
		while( Max_Flow::BFS() )
			ans-=Max_Flow::Dinic(S,INF);
		if(!ans)puts("^_^");
		else puts("T_T");
	}
}


题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值