BZOJ 3621 我想那还真是令人高兴啊 复数

题目大意:给定两个三角形,其中一个可以通过以某点为中心旋转并放缩的方式得到另一个,求这个中心
それはとっても嬉しいなって。
首先两个复数相乘的几何意义是【极角相加,长度相乘】 这两种变换正好对应旋转和放缩
那么我们不妨将所有点都放到复平面上
由于没有给定点的对应关系,故我们3!枚举这个对应关系
设其中一个三角形的三个顶点为A,B,C,另一个三角形中对应顶点为A',B',C'
设中心点为P,变换复数为T
那么我们有方程组:
(A-P)T=(A'-P)
(B-P)T=(B'-P)
(C-P)T=(C'-P)
由前两个方程解得
T=(A'-B')/(A-B)

P=(AT-A')/(T-1)

代入第三个方程中验证即可。

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define EPS 1e-4
using namespace std;
struct Complex{
	double a,b;
	Complex() {}
	Complex(double _,double __=0):
		a(_),b(__) {}
	friend istream& operator >> (istream &_,Complex &c)
	{
		scanf("%lf%lf",&c.a,&c.b);
		return _;
	}
	friend ostream& operator << (ostream &_,const Complex &c)
	{
		printf("%.6lf %.6lf\n",c.a,c.b);
		return _;
	}
	friend Complex operator + (const Complex &c1,const Complex &c2)
	{
		return Complex(c1.a+c2.a,c1.b+c2.b);
	}
	friend Complex operator - (const Complex &c1,const Complex &c2)
	{
		return Complex(c1.a-c2.a,c1.b-c2.b);
	}
	friend Complex operator * (const Complex &c1,const Complex &c2)
	{
		return Complex(c1.a*c2.a-c1.b*c2.b,c1.a*c2.b+c1.b*c2.a);
	}
	friend Complex operator / (const Complex &c1,const Complex &c2)
	{
		double modulus=c2.a*c2.a+c2.b*c2.b;
		return Complex((c1.a*c2.a+c1.b*c2.b)/modulus,(c1.b*c2.a-c1.a*c2.b)/modulus);
	}
	friend bool operator == (const Complex &c1,const Complex &c2)
	{
		return fabs(c1.a-c2.a)<EPS && fabs(c1.b-c2.b)<EPS ;
	}
}A,B,C,points[4];
void Calculate(const Complex _A,const Complex _B,const Complex _C)
{
	Complex T=(_A-_B)/(A-B),P=(A*T-_A)/(T-1);
	if( (C-P)*T==(_C-P) )
	{
		cout<<P<<endl;
		throw true;
	}
}
int main()
{
	int T;
	for(cin>>T;T;T--)
	{
		cin>>A>>B>>C>>points[1]>>points[2]>>points[3];
		try{
			Calculate(points[1],points[2],points[3]);
			Calculate(points[1],points[3],points[2]);
			Calculate(points[2],points[1],points[3]);
			Calculate(points[2],points[3],points[1]);
			Calculate(points[3],points[1],points[2]);
			Calculate(points[3],points[2],points[1]);
		}catch(bool){}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值