BZOJ 1095 ZJOI2007 Hide 捉迷藏 动态树分治+堆

22 篇文章 0 订阅
11 篇文章 0 订阅

题目大意:给定一棵树,一开始每个点都是黑点,多次改变某个点的状态或询问距离最远的两个黑点的距离

《珍爱生命远离STL可是我还是可耻地用了STL系列》

传说中的动态树分治。。。其实并没有那么神嘛= =

↑别听这傻瓜瞎说这货被STL卡了一天QAQ

我们把分治过程中遍历过的重心都连起来 上一层的重心链接下一层的重心 可以得到一棵新的树

下面我们开始讨论这棵新树


显然这棵树的高度不会超过O(logn)

然后我们每个节点开两个堆

第一个堆记录子树中所有节点到父亲节点的距离

第二个堆记录所有子节点的堆顶

那么一个节点的堆2中的最大和次大加起来就是子树中经过这个节点的最长链

然后我们最后开一个全局的堆,记录所有堆2中最大值和次大值之和

那么全局的堆顶就是答案


修改啥的自己YY吧有益身心健康QAQ QAQ QAQ


这内存卡的飞起啊- -

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 100100
using namespace std;
struct Priority_Queue{
	priority_queue<int> heap,delmark;
	void Insert(int x)
	{
		heap.push(x);
	}
	void Erase(int x)
	{
		delmark.push(x);
	}
	void Pop()
	{
		while( delmark.size() && heap.top()==delmark.top() )
			heap.pop(),delmark.pop();
		heap.pop();
	}
	int Top()
	{
		while( delmark.size() && heap.top()==delmark.top() )
			heap.pop(),delmark.pop();
		return heap.top();
	}
	int Second_Top()
	{
		int temp=Top();Pop();
		int re=Top();Insert(temp);
		return re;
	}
	int Size()
	{
		return heap.size()-delmark.size();
	}
}s1[M],s2[M],ans;

struct abcd{
	int to,next;
	bool ban;
}table[M<<1];
int head[M],tot=1;
int n,m,cnt;
int fa[M];
bool status[M];
int log_2[M<<1],dpt[M],pos[M],a[M<<1][20],T;
void Add(int x,int y)
{
	table[++tot].to=y;
	table[tot].next=head[x];
	head[x]=tot;
}
int Get_Size(int x,int from)
{
	int i,re=1;
	for(i=head[x];i;i=table[i].next)
	{
		if(table[i].ban||table[i].to==from)
			continue;
		re+=Get_Size(table[i].to,x);
	}
	return re;
}
int Get_Centre_Of_Gravity(int x,int from,int size,int &cg)
{
	int i,re=1,flag=true;
	for(i=head[x];i;i=table[i].next)
	{
		if(table[i].ban||table[i].to==from)
			continue;
		int temp=Get_Centre_Of_Gravity(table[i].to,x,size,cg);
		if(temp<<1>size)
			flag=false;
		re+=temp;
	}
	if(size-re<<1>size)
		flag=false;
	if(flag) cg=x;
	return re;
}
void DFS(int x,int from,int dpt,Priority_Queue &s)
{
	int i;
	s.Insert(dpt);
	for(i=head[x];i;i=table[i].next)
	{
		if(table[i].ban||table[i].to==from)
			continue;
		DFS(table[i].to,x,dpt+1,s);
	}
}
void Insert(Priority_Queue &s)
{
	if(s.Size()>=2)
	{
		int temp=s.Top()+s.Second_Top();
		ans.Insert(temp);
	}
}
void Erase(Priority_Queue &s)
{
	if(s.Size()>=2)
	{
		int temp=s.Top()+s.Second_Top();
		ans.Erase(temp);
	}
}
int Tree_Divide_And_Conquer(int x)
{
	int i,size,cg;size=Get_Size(x,0);
	Get_Centre_Of_Gravity(x,0,size,cg);
	s2[cg].Insert(0);
	for(i=head[cg];i;i=table[i].next)
		if(!table[i].ban)
		{
			table[i].ban=table[i^1].ban=true;
			Priority_Queue s;
			DFS(table[i].to,0,1,s);
			int temp=Tree_Divide_And_Conquer(table[i].to);
			fa[temp]=cg;s1[temp]=s;
			s2[cg].Insert(s1[temp].Top());
		}
	Insert(s2[cg]);
	return cg;
}
void DFS(int x,int from)
{
	int i;
	a[pos[x]=++T][0]=dpt[x]=dpt[from]+1;
	for(i=head[x];i;i=table[i].next)
		if(table[i].to!=from)
		{
			DFS(table[i].to,x);
			a[++T][0]=dpt[x];
		}
}
int LCA_Depth(int x,int y)
{
	x=pos[x];y=pos[y];
	if(x>y) swap(x,y);
	int L=log_2[y-x+1];
	return min(a[x][L],a[y-(1<<L)+1][L]);
}
int Distance(int x,int y)
{
	return dpt[x]+dpt[y]-2*LCA_Depth(x,y);
}
void Turn_On(int x)
{
	int i;
	Erase(s2[x]);
	s2[x].Insert(0);
	Insert(s2[x]);
	for(i=x;fa[i];i=fa[i])
	{
		Erase(s2[fa[i]]);
		
		if(s1[i].Size())
			s2[fa[i]].Erase(s1[i].Top());
		
		s1[i].Insert(Distance(fa[i],x));
		
		if(s1[i].Size())
			s2[fa[i]].Insert(s1[i].Top());
		
		Insert(s2[fa[i]]);
	}
}
void Turn_Off(int x)
{
	int i;
	Erase(s2[x]);
	s2[x].Erase(0);
	Insert(s2[x]);
	for(i=x;fa[i];i=fa[i])
	{
		Erase(s2[fa[i]]);
		
		if(s1[i].Size())
			s2[fa[i]].Erase(s1[i].Top());
		
		s1[i].Erase(Distance(fa[i],x));
		
		if(s1[i].Size())
			s2[fa[i]].Insert(s1[i].Top());
		
		Insert(s2[fa[i]]);
	}
}
int main()
{
	int i,j,x,y;
	char p[10];
	cin>>n;cnt=n;
	for(i=1;i<n;i++)
	{
		scanf("%d%d",&x,&y);
		Add(x,y);Add(y,x);
	}
	Tree_Divide_And_Conquer(1);
	DFS(1,0);
	for(i=2;i<=T;i++)
		log_2[i]=log_2[i>>1]+1;
	for(j=1;j<=log_2[T];j++)
		for(i=1;i+(1<<j)-1<=T;i++)
			a[i][j]=min(a[i][j-1],a[i+(1<<j-1)][j-1]);
	for(i=1;i<=n;i++)
		status[i]=true;
	cin>>m;
	for(i=1;i<=m;i++)
	{
		scanf("%s",p);
		if(p[0]=='G')
		{
			if(cnt<=1)
				printf("%d\n",cnt-1);
			else
				printf("%d\n",ans.Top());
		}
		else
		{
			scanf("%d",&x);
			if(status[x]==true)
			{
				--cnt;status[x]=false;
				Turn_Off(x);
			}
			else
			{
				++cnt;status[x]=true;
				Turn_On(x);
			}
		}
	}
	return 0;
}


题目描述 有一个 $n$ 个的棋盘,每个上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个的父节是它的前驱或者后继,然后我们从根节开始,依次向下遍历,对于每个节,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有的权值和的最小值,然后再将这个值加上当前节的权值,就可以得到从根节到当前节的路径中,所有的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值