BZOJ 3925 Zjoi2015 地震后的幻想乡 期望状压DP

14 篇文章 1 订阅
12 篇文章 1 订阅

题目大意:给定一张点数不超过10的无向连通图,每条边有一个[0,1]之间的随机权值,求最小生成树上最大边的期望值

此生无悔入东方,来世愿生幻想乡

OTZ

首先既然权值在[0,1]之间均匀分布那么两条边权值相同的概率为0 于是我们只考虑所有边边权都不同的情况

如果最小生成树上的最大边为x,那么权值小于x的边一定不能将这个图连通,而权值<=x的边就可以

因此对于一个x,如果我们求出【只有边权小于x的边存在时这个图不连通】的概率,那么这个概率就是答案>=x的概率

不妨设这个概率为f(x) 那么这个f(x)其实是关于x的一个多项式 而答案就是∫[0,1]f(x)dx

至于为什么答案是f(x)的积分可以感性理解下。。。我数死早。。。


下面就是如何求f(x)了

首先【边权小于x的概率】就是x 因此这个问题等价于【每条边有x的概率出现时这个图不连通的概率】

”然后就是经典做法了“。。。clj只说到这。。。然后我扒了半天代码才反应过来怎么做QAQ 我好弱QAQ


这个做法和POJ1737 连通图的做法是类似的

首先我们考虑补集法 求这个图连通的概率 然后用1减掉就行了

然后我们枚举每一个诱导子图 计算这个子图连通的概率

首先我们任选子图中的一点p,然后枚举哪些点与p相连

设p所在联通块联通的概率为q,x所在联通块与其它点之间共有k条边,那么这种情况不连通的概率就是q*(1-x)^k

从1中减掉所有不连通的概率就是这个状态连通的概率了。。。


我语死早看不懂就去看代码吧。。。。


注意精度有问题 long double过不去 要用__float128

#include <vector>
#include <cstdio>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define M 15
using namespace std;
 
typedef __float128 ld;
typedef vector<long long> Poly;
 
int n,m,a[M];
 
Poly pow_1_x[M*M],f[1<<10];
 
Poly operator + (const Poly &x,const Poly &y)
{
    int i;
    Poly re(max(x.size(),y.size()),0);
    for(i=0;i<x.size();i++)
        re[i]+=x[i];
    for(i=0;i<y.size();i++)
        re[i]+=y[i];
    return re;
}
 
Poly operator - (const Poly &x,const Poly &y)
{
    int i;
    Poly re(max(x.size(),y.size()),0);
    for(i=0;i<x.size();i++)
        re[i]+=x[i];
    for(i=0;i<y.size();i++)
        re[i]-=y[i];
    return re;
}
 
Poly operator * (const Poly &x,const Poly &y)
{
    int i,j;
    Poly re(x.size()+y.size()-1,0);
    for(i=0;i<x.size();i++)
        for(j=0;j<y.size();j++)
            re[i+j]+=x[i]*y[j];
    return re;
}
 
ld Integrate (const Poly &x)
{
    int i;ld re=0;
    for(i=0;i<x.size();i++)
        re+=(ld)x[i]/(i+1);
    return re;
}
 
int Count(int x)
{
    int re=0;
    for(;x;x-=x&-x)
        re++;
    return re;
}
 
int main()
{
    int i,j,k,x,y;
    cin>>n>>m;
    for(i=1;i<=m;i++)
    {
        scanf("%d%d",&x,&y);
        a[x]|=1<<y-1;
        a[y]|=1<<x-1;
    }
    new (&pow_1_x[0])Poly(1,1);
    new (&pow_1_x[1])Poly(2,0);
    pow_1_x[1][0]=1;pow_1_x[1][1]=-1;
    for(i=2;i<=m;i++)
        pow_1_x[i]=pow_1_x[i-1]*pow_1_x[1];
    for(i=1;i<1<<n;i++)
    {
        new (&f[i])Poly(1,1);
        for(x=1;x<=n;x++)
            if(i>>x-1&1)
                break;
        for(j=i^(1<<x-1);j;(--j)&=i^(1<<x-1))
        {
            int temp=i^j,cnt=0;
            for(k=1;k<=n;k++)
                if(temp>>k-1&1)
                    cnt+=Count(a[k]&j);
            f[i]=f[i]-f[temp]*pow_1_x[cnt];
        }
    }
    Poly disconnect=Poly(1,1)-f[(1<<n)-1];
    ld ans=Integrate(disconnect);
    cout<<fixed<<setprecision(6)<<(double)ans<<endl;
    return 0;
}


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值