BZOJ 4305 数列的GCD 数论

42 篇文章 0 订阅

题目大意:给定 n,m 和一个长度为 n 的数列ai..n,其中满足 1aim ,对于 d=1..m 求数列 b1..n 的个数,满足:
1.  1bim
2.  gcd(b1,b2,...,bn)=d
3.  ni=1[aibi]=k

k 个位置不同就是有nk个位置相同,设 s=nk
对于一个 d ,设a数组中有 cnt 个数是 d 的倍数,那么答案就是
ansd=Cscnt(md1)cntsmdncntmdi=2ansdi
cnt 和后面那个求和式子都能在均摊 O(logm) 的时间内求出
时间复杂度 O(mlogm)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 300300
#define MOD 1000000007
using namespace std;
int n,m,k;
int cnt[M],ans[M];
long long fac[M],inv[M];
long long Quick_Power(long long x,int y)
{
    long long re=1;
    while(y)
    {
        if(y&1) (re*=x)%=MOD;
        (x*=x)%=MOD; y>>=1;
    }
    return re;
}
void Pretreatment()
{
    int i;
    for(fac[0]=1,i=1;i<=n;i++)
        fac[i]=fac[i-1]*i%MOD;
    for(inv[1]=1,i=2;i<=n;i++)
        inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
    for(inv[0]=1,i=1;i<=n;i++)
        (inv[i]*=inv[i-1])%=MOD;
}
long long C(int n,int m)
{
    return fac[n] * inv[m] % MOD * inv[n-m] % MOD;
}
int main()
{
    int i,j,x;
    cin>>n>>m>>k;k=n-k;
    Pretreatment();
    for(i=1;i<=n;i++)
    {
        scanf("%d",&x);
        ++cnt[x];
    }
    for(i=1;i<=m;i++)
    {
        int _cnt=0;
        for(j=i;j<=m;j+=i)
            _cnt+=cnt[j];
        if(_cnt<k)
        {
            ans[i]=0;
            continue;
        }
        ans[i]=C(_cnt,k) * Quick_Power(m/i-1,_cnt-k) % MOD * Quick_Power(m/i,n-_cnt) % MOD;
    }
    for(i=m;i;i--)
        for(j=i+i;j<=m;j+=i)
            (ans[i]+=MOD-ans[j])%=MOD;
    for(i=1;i<=m;i++)
        printf("%d%c",ans[i],i==m?'\n':' ');
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值