BZOJ 4318 OSU! 期望DP

题目大意:给定一个长度为 n 的01串,第i个位置有 ai 的概率为 1 ,最终得分为01串中所有连在一起1的长度的立方和,求得分的期望

假如这个01串使确定的,考虑每新增一个位置,如果这个位置是0,则贡献为 0 ,否则贡献为(x+1)3x3=3x2+3x+1,其中 x 为加入之前最长的全1后缀的长度
现在这个问题变成了期望问题,那么我们只需要维护一个x的期望和 x2 的期望即可。注意平方的期望不等于期望的平方。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 100100
using namespace std;
int n;
double a[M],l[M],l2[M],f[M];
int main()
{
    int i;
    cin>>n;
    for(i=1;i<=n;i++)
    {
        scanf("%lf",&a[i]);
        l[i]=(l[i-1]+1)*a[i];
        l2[i]=(l2[i-1]+2*l[i-1]+1)*a[i];
        f[i]=f[i-1]+(3*l2[i-1]+3*l[i-1]+1)*a[i];
    }
    printf("%.1lf\n",f[n]);
    return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值