CF做题报告:1

T1 Theatre Square
题目

把行与列分开考虑
对于每一行,最少要 [ m a \frac{m}{a} am] (上取整) ,
每一列为 [ n a ] [\frac{n}{a}] [an]
相乘即可
时间复杂度 O ( 1 ) O(1) O(1)

#include<bits/stdc++.h>
using namespace std;
int n,m,a;
int main(){
    scanf("%d%d%d",&n,&m,&a);
    printf("%lld\n",1ll*(1ll*(n/a+(n%a!=0))*1ll*(m/a+(m%a!=0))));
}

T2 Spreadsheets

题目

字符串模拟题
就毒瘤,慢慢写,没问题
时间复杂度 O ( n ∗ ∣ s ∣ ) O(n*|s|) O(ns)

#include<bits/stdc++.h>
using namespace std;
const int N=1607;
int n;
string s;
int main(){
    scanf("%d",&n);
    while(n--){
        cin>>s;
        int len=s.size();
        bool f1=0,f2=0;
        int pos,p1;
        for(int i=0;i<len;i++){
            if(s[i]>='0'&&s[i]<='9') f1=1;
            if(f1==1 && s[i]<='Z'&&s[i]>='A') {
                f2=1,pos=i;
                break;
            }
        }
        if(f2){
            int x=0;
            for(int i=pos+1;i<len;i++){
                x*=10;
                x+=s[i]-'0';
            }
            string ans;
            while(x){
            	if(x%26==0) ans+='Z',x=(x/26)-1;
                else ans+=char((x%26)+'A'-1),x/=26;;
                
            }
            for(int i=ans.size()-1;~i;i--)
            	cout<<ans[i];
            for(int i=1;i<pos;i++)
                cout<<s[i];
            puts(" ");
        }else{
        	cout<<'R';
        	string ss;
        	for(auto x:s){
        		if(x>='A'&&x<='Z')ss+=x;
        		else cout<<x;
			}
			cout<<'C';
			int y=1,ans=0;
			for(int i=ss.size()-1;~i;i--){
				ans+=y*(ss[i]-'A'+1);
				y*=26;
			}
			cout<<ans<<endl;
		}
    }
}

T3 Ancient Berland Circus

题目

三个点形成的正多边形的所有顶点一定在三个点形成的三角形的外接圆上
考虑一个正多边形的一条边所对应的圆心角为a;r为外接圆的半径
S 正多边形 = r 2 ∗ s i n a 2 ∗ 2 π a S_{正多边形}=\frac{r^2* sin a}{2}*\frac{2\pi}{a} S正多边形=2r2sinaa2π
显然, S 正多边形 S_{正多边形} S正多边形仅与 s i n a a \frac{sina}{a} asina有关
a的取值范围为 [ 0 , π ] [0,\pi] [0,π]
f ( x ) = s i n a a f(x)=\frac{sina}{a} f(x)=asina [ 0 , π ] [0,\pi] [0,π]的函数图像如图:
在这里插入图片描述
明显在 [ 0 , π ] [0,\pi] [0,π]单调递减,所以我们尽量使a变大,即取最大公约数即可
求三角形面积用海伦公式 S Δ A B C = p ( p − a ) ( p − b ) ( p − c ) , 其中 ( a , b , c 为三角形三边长 , p = a + b + c 2 ) SΔABC= \sqrt{p(p−a)(p−b)(p−c)} ,其中(a,b,c为三角形三边长,p= \frac{a+b+c}{2}) SΔABC=p(pa)(pb)(pc) ,其中(a,b,c为三角形三边长,p=2a+b+c)
结合正弦定理 可知 r = a b c 4 S Δ A B C r=\frac{abc}{4SΔABC} r=4SΔABCabc

#include<bits/stdc++.h>
using namespace std;
typedef double db;
const db Pi=acos(-1.0) , eps=1e-2;
db len[4],a[4];
struct Pos{ db x,y; }p[4];
db get_dis(db xa,db xb,db ya,db yb){ return sqrt(((xa-xb)*(xa-xb))+(ya-yb)*(ya-yb)); }
db gcd(db a,db b){
    if(fabs(b)<eps) return a;
    if(fabs(a)<eps) return b;
    return gcd(b,fmod(a,b));
}
int main(){
    db t=0.0,A,r,abc=1.0;
    for(int i=0;i<3;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
    for(int i=0;i<3;i++) {
        len[i]=get_dis(p[i].x,p[(i+1)%3].x,p[i].y,p[(i+1)%3].y);//算出三边的长
        t+=len[i]; abc*=len[i];
    }
    t/=2;
    A=sqrt(t*(t-len[0])*(t-len[1])*(t-len[2])); //三点形成的三角形的面积
    // printf("%.6lf\n",A);
    r=abc/(4.0*A);
    // printf("%.6lf\n",r);
    for(int i=0;i<2;i++)
        a[i]=acos(1.0-(len[i]*len[i]/(2*r*r)));//余弦定理
    a[2]=2*Pi-a[0]-a[1];
    t=gcd(a[0],gcd(a[1],a[2]));
    // printf("%.6lf %.6lf %.6lf %.6lf\n",t,a[0],a[1],a[2]);
    printf("%.6lf\n",Pi*r*r*sin(t)/t);
}

希望可以一直坚持下去

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值