T1 Theatre Square
题目
把行与列分开考虑
对于每一行,最少要 [
m
a
\frac{m}{a}
am] (上取整) ,
每一列为
[
n
a
]
[\frac{n}{a}]
[an]
相乘即可
时间复杂度
O
(
1
)
O(1)
O(1)
#include<bits/stdc++.h>
using namespace std;
int n,m,a;
int main(){
scanf("%d%d%d",&n,&m,&a);
printf("%lld\n",1ll*(1ll*(n/a+(n%a!=0))*1ll*(m/a+(m%a!=0))));
}
T2 Spreadsheets
题目
字符串模拟题
就毒瘤,慢慢写,没问题
时间复杂度
O
(
n
∗
∣
s
∣
)
O(n*|s|)
O(n∗∣s∣)
#include<bits/stdc++.h>
using namespace std;
const int N=1607;
int n;
string s;
int main(){
scanf("%d",&n);
while(n--){
cin>>s;
int len=s.size();
bool f1=0,f2=0;
int pos,p1;
for(int i=0;i<len;i++){
if(s[i]>='0'&&s[i]<='9') f1=1;
if(f1==1 && s[i]<='Z'&&s[i]>='A') {
f2=1,pos=i;
break;
}
}
if(f2){
int x=0;
for(int i=pos+1;i<len;i++){
x*=10;
x+=s[i]-'0';
}
string ans;
while(x){
if(x%26==0) ans+='Z',x=(x/26)-1;
else ans+=char((x%26)+'A'-1),x/=26;;
}
for(int i=ans.size()-1;~i;i--)
cout<<ans[i];
for(int i=1;i<pos;i++)
cout<<s[i];
puts(" ");
}else{
cout<<'R';
string ss;
for(auto x:s){
if(x>='A'&&x<='Z')ss+=x;
else cout<<x;
}
cout<<'C';
int y=1,ans=0;
for(int i=ss.size()-1;~i;i--){
ans+=y*(ss[i]-'A'+1);
y*=26;
}
cout<<ans<<endl;
}
}
}
T3 Ancient Berland Circus
题目
三个点形成的正多边形的所有顶点一定在三个点形成的三角形的外接圆上
考虑一个正多边形的一条边所对应的圆心角为a;r为外接圆的半径
S
正多边形
=
r
2
∗
s
i
n
a
2
∗
2
π
a
S_{正多边形}=\frac{r^2* sin a}{2}*\frac{2\pi}{a}
S正多边形=2r2∗sina∗a2π
显然,
S
正多边形
S_{正多边形}
S正多边形仅与
s
i
n
a
a
\frac{sina}{a}
asina有关
a的取值范围为
[
0
,
π
]
[0,\pi]
[0,π]
f
(
x
)
=
s
i
n
a
a
f(x)=\frac{sina}{a}
f(x)=asina在
[
0
,
π
]
[0,\pi]
[0,π]的函数图像如图:
明显在
[
0
,
π
]
[0,\pi]
[0,π]单调递减,所以我们尽量使a变大,即取最大公约数即可
求三角形面积用海伦公式
S
Δ
A
B
C
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
c
)
,
其中
(
a
,
b
,
c
为三角形三边长
,
p
=
a
+
b
+
c
2
)
SΔABC= \sqrt{p(p−a)(p−b)(p−c)} ,其中(a,b,c为三角形三边长,p= \frac{a+b+c}{2})
SΔABC=p(p−a)(p−b)(p−c),其中(a,b,c为三角形三边长,p=2a+b+c)
结合正弦定理 可知
r
=
a
b
c
4
S
Δ
A
B
C
r=\frac{abc}{4SΔABC}
r=4SΔABCabc
#include<bits/stdc++.h>
using namespace std;
typedef double db;
const db Pi=acos(-1.0) , eps=1e-2;
db len[4],a[4];
struct Pos{ db x,y; }p[4];
db get_dis(db xa,db xb,db ya,db yb){ return sqrt(((xa-xb)*(xa-xb))+(ya-yb)*(ya-yb)); }
db gcd(db a,db b){
if(fabs(b)<eps) return a;
if(fabs(a)<eps) return b;
return gcd(b,fmod(a,b));
}
int main(){
db t=0.0,A,r,abc=1.0;
for(int i=0;i<3;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
for(int i=0;i<3;i++) {
len[i]=get_dis(p[i].x,p[(i+1)%3].x,p[i].y,p[(i+1)%3].y);//算出三边的长
t+=len[i]; abc*=len[i];
}
t/=2;
A=sqrt(t*(t-len[0])*(t-len[1])*(t-len[2])); //三点形成的三角形的面积
// printf("%.6lf\n",A);
r=abc/(4.0*A);
// printf("%.6lf\n",r);
for(int i=0;i<2;i++)
a[i]=acos(1.0-(len[i]*len[i]/(2*r*r)));//余弦定理
a[2]=2*Pi-a[0]-a[1];
t=gcd(a[0],gcd(a[1],a[2]));
// printf("%.6lf %.6lf %.6lf %.6lf\n",t,a[0],a[1],a[2]);
printf("%.6lf\n",Pi*r*r*sin(t)/t);
}
希望可以一直坚持下去