引
两种做法我都写写
解法1:
动态规划
+
W
Q
S
二分
动态规划+WQS二分
动态规划+WQS二分
解法2:
反悔贪心
反悔贪心
反悔贪心
解法1
首先有这样两个性质:
1. 1. 1. 假设初始灯的颜色都相同和变色方案相同,将 R R R 盏蓝灯变成红色和将 N − R N-R N−R 盏红灯变成蓝色的结果都是一样的。
2.
2.
2. 最优方案变色的灯一定是不连续的。
性质
2
2
2 的证明可以考虑反证法,比较显然
那么基于 性质
2
2
2 我们可以将
a
i
←
a
i
−
1
+
a
i
a_i \gets a_{i-1} +a_i
ai←ai−1+ai (为方便,后文的
a
i
a_i
ai 均为转化后的) ,在计算时避免连续的变色的灯即可
那我们可以先考虑
D
P
DP
DP
f
0
/
1
,
i
,
j
:
考虑前
i
个位置,选了
j
个位置变色,第
i
个位置是否变色的最大值
f_{0/1,i,j} : 考虑前i个位置,选了j个位置变色,第i个位置是否变色的最大值
f0/1,i,j:考虑前i个位置,选了j个位置变色,第i个位置是否变色的最大值
直接转移是
O
(
n
2
)
O(n^2)
O(n2) 的,需要优化
设
c
n
t
cnt
cnt 为需要变色的个数 ,
f
(
c
n
t
)
f(cnt)
f(cnt) 是其答案,那么可以明显得知
f
(
c
n
t
)
f(cnt)
f(cnt) 的函数图像为一个 上凸壳 ,那么就可以 使用
W
Q
S
二分
WQS二分
WQS二分 ,去掉
j
j
j 这一维
优化后为
O
(
n
log
W
)
O(n\log{W})
O(nlogW)
至于内部的
D
P
DP
DP 还是比较简单的,可以看看代码
Code:
#include <iostream>
#define rep(i, l, r) for (int i = l; i <= r; ++i)
using namespace std;
typedef long long ll;
const int N = 200005;
int n, R;
int a[N],b[N];
struct node {
int num; ll val;
node() {}
node(int _num, ll _val) : num(_num), val(_val) {}
bool operator<(const node &rhs) const { return val == rhs.val ? num < rhs.num : val < rhs.val; }
node operator+(const node &rhs) const { return node(num + rhs.num, val + rhs.val); }
};
node max(node x, node y) { return x < y ? y : x; }
node check(int k) {
node f0(0, 0), f1(0, 0);
rep(i, 1, n) {
node tmp = max(f0 + node(1, b[i] - k), f1);
f0 = max(f0, f1);
f1 = tmp;
}
return f1;
}
int main() {
scanf("%d%d", &n, &R);R = min(R, n - R);
rep(i, 1, n - 1) { scanf("%d", &a[i]); }
rep(i, 1, n) { b[i] = a[i - 1] + a[i]; }
int l=0,r=2e9;
while(l<r) {
int mid=(1ll+l+r) / 2;
if(check(mid).num < R) r=mid-1;
else l=mid;
}
ll ans=check(l).val+ 1ll*l*R;
printf("%lld\n",ans);
}
解法2
每次贪心的选取
a
i
a_i
ai ,但很容易被
H
a
c
k
Hack
Hack 掉
比如给定的序列为
{
4
,
4
,
5
,
4
,
4
}
\{4,4,5,4,4\}
{4,4,5,4,4} ,需要选两个灯
但是反悔贪心就不会
具体反悔过程如下 :
- 先选出最大 a i a_i ai ,并加上它
- 然后将令 a i ← a p r e i + a n x t i − a i a_i\gets a_{pre_i}+a_{nxt_i}-a_i ai←aprei+anxti−ai
不断用单调队列维护即可
Code
#include <algorithm>
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
const int N=2e5+7;
int n,r;
int a[N],pre[N],nxt[N];
ll val[N],ans;
bool vis[N];
priority_queue<pair<ll,int> > q;
int main(){
scanf("%d%d",&n,&r) ; r=min(r,n-r);
for(int i=1;i<n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) {
pre[i]=i-1,nxt[i]=i+1;
q.push(make_pair(val[i]=a[i-1]+a[i],i));
}
for(int i=1;i<=r;i++) {
while(vis[q.top().second]) q.pop();
int u=q.top().second,lt=pre[u],rt=nxt[u]; q.pop();
ans+=val[u];
vis[lt]=vis[rt]=1;
pre[u]=pre[lt],nxt[u]=nxt[rt];
nxt[pre[u]]=u,pre[nxt[u]]=u;
val[u]=val[lt]+val[rt]-val[u];
q.push(make_pair(val[u],u));
}
printf("%lld\n",ans);
}
结
也参考了别人的博客,自己综合了一下