[ABC218H] Red and Blue Lamps

题目传送门

两种做法我都写写
解法1: 动态规划 + W Q S 二分 动态规划+WQS二分 动态规划+WQS二分
解法2: 反悔贪心 反悔贪心 反悔贪心

解法1

首先有这样两个性质:

1. 1. 1. 假设初始灯的颜色都相同和变色方案相同,将 R R R 盏蓝灯变成红色和将 N − R N-R NR 盏红灯变成蓝色的结果都是一样的。

2. 2. 2. 最优方案变色的灯一定是不连续的。
性质 2 2 2 的证明可以考虑反证法,比较显然

那么基于 性质 2 2 2 我们可以将 a i ← a i − 1 + a i a_i \gets a_{i-1} +a_i aiai1+ai (为方便,后文的 a i a_i ai 均为转化后的) ,在计算时避免连续的变色的灯即可
那我们可以先考虑 D P DP DP
f 0 / 1 , i , j : 考虑前 i 个位置,选了 j 个位置变色,第 i 个位置是否变色的最大值 f_{0/1,i,j} : 考虑前i个位置,选了j个位置变色,第i个位置是否变色的最大值 f0/1,i,j:考虑前i个位置,选了j个位置变色,第i个位置是否变色的最大值
直接转移是 O ( n 2 ) O(n^2) O(n2) 的,需要优化
c n t cnt cnt 为需要变色的个数 , f ( c n t ) f(cnt) f(cnt) 是其答案,那么可以明显得知 f ( c n t ) f(cnt) f(cnt) 的函数图像为一个 上凸壳 ,那么就可以 使用 W Q S 二分 WQS二分 WQS二分 ,去掉 j j j 这一维
优化后为 O ( n log ⁡ W ) O(n\log{W}) O(nlogW)
至于内部的 D P DP DP 还是比较简单的,可以看看代码

Code:

#include <iostream>
#define rep(i, l, r) for (int i = l; i <= r; ++i)
using namespace std;
typedef long long ll;
const int N = 200005;
int n, R;
int a[N],b[N];
struct  node {
    int num; ll val;
    node() {}
    node(int _num, ll _val) : num(_num), val(_val) {}
    bool operator<(const node &rhs) const { return val == rhs.val ? num < rhs.num : val < rhs.val; }
    node operator+(const node &rhs) const { return node(num + rhs.num, val + rhs.val); }
};
node max(node x, node y) { return x < y ? y : x; }
node check(int k) {
    node f0(0, 0), f1(0, 0);
    rep(i, 1, n) {
        node tmp = max(f0 + node(1, b[i] - k), f1);
        f0 = max(f0, f1);
        f1 = tmp;
    }
    return f1;
}

int main() {
    scanf("%d%d", &n, &R);R = min(R, n - R);
    rep(i, 1, n - 1) { scanf("%d", &a[i]); }
    rep(i, 1, n) { b[i] = a[i - 1] + a[i]; }
    int l=0,r=2e9;
    while(l<r) {
    	int mid=(1ll+l+r) / 2;
    	if(check(mid).num < R) r=mid-1;
    	else l=mid;
	}
	ll ans=check(l).val+ 1ll*l*R;
	printf("%lld\n",ans);
}

解法2

每次贪心的选取 a i a_i ai ,但很容易被 H a c k Hack Hack
比如给定的序列为 { 4 , 4 , 5 , 4 , 4 } \{4,4,5,4,4\} {4,4,5,4,4} ,需要选两个灯
但是反悔贪心就不会
具体反悔过程如下 :

  1. 先选出最大 a i a_i ai ,并加上它
  2. 然后将令 a i ← a p r e i + a n x t i − a i a_i\gets a_{pre_i}+a_{nxt_i}-a_i aiaprei+anxtiai

不断用单调队列维护即可

Code

#include <algorithm>
#include <iostream>
#include <vector>
#include <queue>

using namespace std;

typedef long long ll;

const int N=2e5+7;

int n,r;
int a[N],pre[N],nxt[N];
ll val[N],ans;
bool vis[N];
priority_queue<pair<ll,int> > q;

int main(){
	scanf("%d%d",&n,&r) ; r=min(r,n-r);
	for(int i=1;i<n;i++) scanf("%d",&a[i]);
	for(int i=1;i<=n;i++) {
		pre[i]=i-1,nxt[i]=i+1;
		q.push(make_pair(val[i]=a[i-1]+a[i],i));
	}
	for(int i=1;i<=r;i++) {
		while(vis[q.top().second]) q.pop();
		int u=q.top().second,lt=pre[u],rt=nxt[u]; q.pop();
		ans+=val[u];
		vis[lt]=vis[rt]=1;
		pre[u]=pre[lt],nxt[u]=nxt[rt];
		nxt[pre[u]]=u,pre[nxt[u]]=u;
		val[u]=val[lt]+val[rt]-val[u];
		q.push(make_pair(val[u],u));
	}
	printf("%lld\n",ans);
}

也参考了别人的博客,自己综合了一下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值