回归分析系列11—时间序列数据中的回归

13 时间序列数据中的回归

13.1 简介

时间序列数据是按时间顺序排列的一系列数据点。时间序列分析的一个关键特性是考虑数据点之间的时间依赖关系。常见的时间序列建模方法包括自回归(AR)、滑动平均(MA)和自回归积分滑动平均(ARIMA)模型。在回归分析中,时间序列模型可以用于预测未来的值。

13.2 自回归模型(AR)

自回归模型是一种使用自身历史数据来预测未来值的模型。简单的自回归模型可以表示为:

eq?Y_t%20%3D%20%5Calpha%20+%20%5Cbeta_1%20Y_%7Bt-1%7D%20+%20%5Cbeta_2%20Y_%7Bt-2%7D%20+%20%5Cldots%20+%20%5Cbeta_p%20Y_%7Bt-p%7D%20+%20%5Cepsilon_t

在Python中,scikit-learn没有直接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术与健康

你的鼓励将是我最大的创作动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值