“可训练提示”(Learnable Prompts)是Prompt Tuning中的一个关键概念。与手动设计的固定文本提示不同,可训练提示指的是一种自动化的、基于学习的提示优化方法。这种提示不再是简单的静态文本,而是通过训练模型来学习的一组向量表示,用以引导模型在特定任务上的输出。
可训练提示的核心思想
- 向量表示:
- 在可训练提示中,提示不再是直接的文本,而是一组向量(通常与模型的输入嵌入有相同的维度)。这些向量可以被视为提示的连续表示。
- 这些向量会与输入文本的嵌入表示结合在一起,以引导模型的行为。
- 学习过程:
- 可训练提示是通过训练来获得的。它们的初始化可能是随机的,也可以基于某些策略进行初始化。
- 通过反向传播算法,提示向量会在训练过程中根据任务的需求进行优化,从而使得这些提示更适合特定的任务。
- 作用方式:
- 可训练提示通常被附加到输入文本的前面(或者根据需求也可以放在后面或中间)。这些提示向量与输入文本一起传递给模型。
- 由于提示向量是模型的一部分,它们在训练过程中会随着损失函数的优化而被调整,以最大化