启发式算法(Heuristic Algorithms) 是一类通过探索近似解来解决复杂优化问题的算法。它们通常用于在可接受的时间内找到“足够好”的解,尤其是当问题规模较大或结构复杂时,传统的精确算法可能无法有效处理。启发式算法并不保证找到最优解,但它们在实际应用中往往能够找到接近最优的解。
启发式算法的特性
- 不保证全局最优:启发式算法旨在找到一个“满意的解”而非最优解。
- 速度快:相比于精确算法,启发式算法的运行时间通常更短,因此适合处理大规模问题。
- 灵活性:启发式算法可以在很多复杂的、不规则的环境中使用,特别是在传统算法失效的情况下。
- 问题依赖性:不同的启发式算法通常需要根据具体问题进行调整。
常见的启发式算法包括遗传算法(GA)、模拟退火(SA)、禁忌搜索(TS)、蚁群算法(ACO)、粒子群优化(PSO)等。