Leetcode 959. 由斜杠划分区域(Java实现 超详细注释!)

Leetcode 959. 由斜杠划分区域

依然是并查集+HashSet,这道题有点难啊,主要难点在于看题目后能否想到如何使用图来解决以及如何去根据已知条件构建并查集!加了详细的注释,方便日后复习,也希望能帮到其他小伙伴,如有错误,欢迎指正!

Java实现:

class Solution {
    public int regionsBySlashes(String[] grid) {
        int n = grid.length;
        // 初始化一个并查集
        DisjointSetUnion djsu = new DisjointSetUnion(n * n * 4);
        // 思路很简单:根据每个每个小单元是/ \\ 空格来确定每个单元中的四个三角形之间的连通关系
        for (int i = 0; i < n; i++){
            for (int j = 0; j < n; j++){
                /**我们会将整个大正方形划成n * n个小正方形,其中每个小正方形又会被分割为四个三角形,我们分别用索引0,1,2,3表示;
                count代表遍历到每个小正方形时,0号三角形的索引*/
                int count = 4 * (n * i + j);
                if (grid[i].charAt(j) == '/'){
                    // 可以自己画一张图,我把上右下左四个三角形分别当做0,1,2,3,那么当当前小正方形的符号是/时,小正方形中的0和3连通,1和2连通
                    djsu.unionSet(count,count + 3);
                    djsu.unionSet(count + 1,count + 2);
                }else if (grid[i].charAt(j) == '\\'){
                    // 当当前小正方形的符号是\时,小正方形中的0和1连通,3和2连通
                    djsu.unionSet(count,count + 1);
                    djsu.unionSet(count + 3,count + 2);
                }else{
                    // 当符号为空格时,那么四个都是连通的
                    djsu.unionSet(count,count + 1);
                    djsu.unionSet(count + 1,count + 2);
                    djsu.unionSet(count + 2,count + 3);
                }
                // 但是我们不能忘了,小正方形之间的三角形也是有连通的可能的
                // 当小正方形右边还有正方形时,即j < n - 1时,当前正方形的1号三角形和右边小正方形的3号是连通的
                if (j < n - 1){
                    djsu.unionSet(count + 1,4 * (n * i + (j + 1)) + 3);
                }
                // 当小正方形下边还有正方形时,即i < n - 1时,当前正方形的2号三角形和下边小正方形的0号是连通的
                if (i < n - 1){
                    djsu.unionSet(count + 2,4 * (n * (i + 1) + j));
                }
            }
        }

        // 到了这一步,我们只需要统计并查集中有几个连通分量即可,这里我们直接将所有的节点的根节点都加入HashSet中,根节点的数目就是区域的数目
        HashSet<Integer> hs = new HashSet<>();
        for (int c = 0 ; c < n * n * 4; c++){
            hs.add(djsu.find(djsu.f[c]));
        }
        return hs.size();
    }
    // 并查集
    class DisjointSetUnion{
        int[] f;
        // 构造函数
        public DisjointSetUnion(int n){
            this.f = new int[n];
            for (int i = 0; i < n; i++){
                this.f[i] = i;
            }
        }
        // 并
        private void unionSet(int x, int y){
            int fx = find(x), fy = find(y);
            if (fx != fy){
                // 合并其实就是让x的根节点认y的根节点做根节点
                f[fx] = fy;
            }
        }
        // 查
        private int find(int a){
            return f[a] == a ? a : (f[a] = find(f[a]));
        }

    }
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页