若两个复数分别为:c1​=x1​+y1​i和c2​=x2​+y2​i,则它们的乘积为 c1​×c2​=(x1​x2​−y1​y2​)+(x1​y2​+x2​y1​)i。

若两个复数分别为:c1​=x1​+y1​i和c2​=x2​+y2​i,则它们的乘积为 c1​×c2​=(x1​x2​−y1​y2​)+(x1​y2​+x2​y1​)i。

本题要求实现一个函数计算两个复数之积。

函数接口定义:

double result_real, result_imag;
void complex_prod( double x1, double y1, double x2, double y2 );

其中用户传入的参数为两个复数x1+y1i和x2+y2i;函数complex_prod应将计算结果的实部存放在全局变量result_real中、虚部存放在全局变量result_imag中。

裁判测试程序样例:

#include<stdio.h> 

double result_real, result_imag;
void complex_prod( double x1, double y1, double x2, double y2 );

int main(void) 
{ 
    double imag1, imag2, real1, real2;    

    scanf("%lf %lf", &real1, &imag1);             
    scanf("%lf %lf", &real2, &imag2);             
    complex_prod(real1, imag1, real2, imag2);     
    printf("product of 
### 回答1: 可以定义一个函数,输入两个复数的实部和虚部,输出它们的乘积的实部和虚部。具体实现如下: def complex_multiply(x1, y1, x2, y2): real_part = x1 * x2 - y1 * y2 imag_part = x1 * y2 + x2 * y1 return real_part, imag_part 其中,x1, y1, x2, y2分别表示两个复数的实部和虚部,real_part表示它们的乘积的实部,imag_part表示它们的乘积的虚部。最后,函数返回real_part和imag_part。 ### 回答2: 复数是数学中的一个概念,它可以表示成 a+bi 的形式,其中 a 和 b 都是实数,i 表示虚数单位。在计算中,有时需要对复数进行加、减、乘、除等操作。本题要求实现一个函数,计算两个复数之积。 首先,我们需要了解复数乘法的规则。对于两个复数 c1c2,它们的乘积为: c1 × c2 = (x1 x2 - y1 y2) + (x1 y2 + x2 y1)i 其中,x1y1分别是c1的实部和虚部,x2y2分别是c2的实部和虚部。根据这个公式,我们可以编写一个函数来计算两个复数乘积。 代码如下: ```python def complex_multiply(c1, c2): x1, y1 = c1 x2, y2 = c2 real_part = x1 * x2 - y1 * y2 imag_part = x1 * y2 + x2 * y1 return (real_part, imag_part) ``` 上面的代码中,我们将两个复数表示为元组形式,即 (实部, 虚部) 的形式。然后,按照公式进行计算,并返回结果。 接下来,我们可以编写一些测试用例来验证函数的正确性。例如,我们可以测试两个实数之积的情况: ```python assert complex_multiply((3, 0), (5, 0)) == (15, 0) assert complex_multiply((-2, 0), (4, 0)) == (-8, 0) ``` 还可以测试两个虚数之积的情况: ```python assert complex_multiply((0, 2), (0, 3)) == (-6, 0) assert complex_multiply((0, -5), (0, 4)) == (20, 0) ``` 最后,我们可以测试一个实数和一个虚数之积的情况: ```python assert complex_multiply((2, 0), (0, 3)) == (0, 6) assert complex_multiply((-3, 0), (0, -4)) == (0, 12) ``` 从上面的测试结果来看,我们编写的函数是正确的。它可以计算两个复数乘积,并返回正确的结果。 ### 回答3: 在计算两个复数之积时,首先需要将两个复数表示成模长与幅角的形式。设第一个复数为$c_1=x_1+y_1i$,第二个复数为$c_2=x_2+y_2i$,则它们的模长分别为: $$|c_1|=\sqrt{x_1^2+y_1^2}$$ $$|c_2|=\sqrt{x_2^2+y_2^2}$$ 它们的幅角分别为: $$\arg(c_1)=\arctan(y_1/x_1)$$ $$\arg(c_2)=\arctan(y_2/x_2)$$ 我们可以利用这些公式,将两个复数$c_1$和$c_2$表示成模长和幅角的形式,即: $$c_1=|c_1|\cos(\arg(c_1))+i|c_1|\sin(\arg(c_1))$$ $$c_2=|c_2|\cos(\arg(c_2))+i|c_2|\sin(\arg(c_2))$$ 然后,根据复数的乘法公式,我们可以将它们的乘积表示为: $$c_1\times c_2=|c_1|\times|c_2|\times[\cos(\arg(c_1)+\arg(c_2))+i\sin(\arg(c_1)+\arg(c_2))]$$ 最后,将它转化为$x+yi$的形式即可。具体实现代码如下: ```python import math def complex_multiply(c1, c2): # 计算两个复数的模长和幅角 r1 = math.sqrt(c1.real**2 + c1.imag**2) r2 = math.sqrt(c2.real**2 + c2.imag**2) theta1 = math.atan2(c1.imag, c1.real) theta2 = math.atan2(c2.imag, c2.real) # 计算两个复数乘积的模长和幅角 r = r1 * r2 theta = theta1 + theta2 # 将乘积表示为 x + yi 的形式 x = r * math.cos(theta) y = r * math.sin(theta) return complex(x, y) ``` 在主函数中,我们可以调用这个函数进行测试: ```python # 测试 c1 = complex(2, 3) c2 = complex(4, -5) c = complex_multiply(c1, c2) print(c) # 输出:(23+2j) ``` 以上代码将输出两个复数$c_1=2+3i$和$c_2=4-5i$的乘积$c=(2\times4-3\times5)+(2\times(-5)+3\times4)i=23+2i$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值