Every day a Leetcode
题目来源:834. 树中距离之和
解法1:换根 DP
题解:【图解】一张图秒懂换根 DP!(Python/Java/C++/Go/JS)
暴力做法是,以点 i 为为树根,从 i 出发对树进行深度优先搜索,那么 i 到 j 的距离就是 j 在这棵树的深度,所有点的深度之和就是 answer[i]。
但这样做,DFS 一次的时间是 O(n),n 个节点个点各 DFS 一次,总时间就是 O(n2),会超时。如何优化呢?
子树大小是怎么算的?
先说二叉树,子树 x 的大小等于左子树的大小,加上右子树的大小,再加上 1(节点 x 本身),那么后序遍历这棵树,就可以算出每棵子树的大小。然后推广到一般树,子树 x 的大小,等于 x 的所有儿子的子树大小之和,再加上 1(节点 x 本身)。
问:这种算法的本质是什么?
答:以图中的这棵树为例,从「以 0 为根」换到「以 2 为根」时,原来 2 的子节点还是 2 的子节点,原来 1 的子节点还是 1 的子节点,唯一改变的是 0 和 2 的父子关系。由此可见,一对节点的距离的「变化量」应该是很小的,那么找出「变化量」的规律,就可以基于 answer[0] 算出 answer[2] 了。这种算法叫做换根 DP。
代码:
/*
* @lc app=leetcode.cn id=834 lang=cpp
*
* [834] 树中距离之和
*/
// @lc code=start
// 换根 DP(树型 DP 的变种)
class Solution
{
public:
vector<int> sumOfDistancesInTree(int n, vector<vector<int>> &edges)
{
// g[x] 表示 x 的所有邻居
vector<vector<int>> g(n);
for (auto &edge : edges)
{
int x = edge[0], y = edge[1];
g[x].push_back(y);
g[y].push_back(x);
}
// size[i] 为 子树 i 的大小
vector<int> size(n, 1); // 注意这里初始化成 1 了,下面只需要累加儿子的子树大小
vector<int> answer(n);
function<void(int, int, int)> dfs = [&](int x, int father, int depth)
{
answer[0] += depth; // depth 为 0 到 x 的距离
// 遍历 x 的邻居 y
for (int &y : g[x])
if (y != father) // 避免访问父节点
{
dfs(y, x, depth + 1); // x 是 y 的父节点
size[x] += size[y]; // 累加 x 的儿子 y 的子树大小
}
};
dfs(0, -1, 0); // 0 没有父节点
function<void(int, int)> reRoot = [&](int x, int father)
{
// 遍历 x 的邻居 y
for (int y : g[x])
{
if (y != father) // 避免访问父节点
{
answer[y] = answer[x] + n - 2 * size[y];
reRoot(y, x); // x 是 y 的父节点
}
}
};
reRoot(0, -1); // 0 没有父节点
return answer;
}
};
// @lc code=end
结果:
复杂度分析:
时间复杂度:O(n),其中 n 是树的节点个数。DFS 两次,每次 DFS 会递归访问每个节点恰好一次,所以时间复杂度为 O(n)。
空间复杂度:O(n),其中 n 是树的节点个数。
拓展题:2858. 可以到达每一个节点的最少边反转次数
代码:
/*
* @lc app=leetcode.cn id=2858 lang=cpp
*
* [2858] 可以到达每一个节点的最少边反转次数
*/
// @lc code=start
class Solution
{
public:
vector<int> minEdgeReversals(int n, vector<vector<int>> &edges)
{
// g[x] 表示 x 的所有邻居
vector<vector<pair<int, int>>> g(n);
for (auto &edge : edges)
{
int x = edge[0], y = edge[1];
// x->y 视为正向,标记为 1;反向标记为 -1
g[x].push_back(pair<int, int>(y, 1));
g[y].push_back(pair<int, int>(x, -1));
}
// size[i] 为 子树 i 的大小
// vector<int> size(n, 1); // 注意这里初始化成 1 了,下面只需要累加儿子的子树大小
vector<int> answer(n);
function<void(int, int)> dfs = [&](int x, int father)
{
// 遍历 x 的邻居 y
for (auto &[y, dir] : g[x])
if (y != father) // 避免访问父节点
{
answer[0] += dir < 0;
dfs(y, x); // x 是 y 的父节点
}
};
dfs(0, -1); // 0 没有父节点
function<void(int, int)> reRoot = [&](int x, int father)
{
// 遍历 x 的邻居 y
for (auto &[y, dir] : g[x])
if (y != father) // 避免访问父节点
{
answer[y] = answer[x] + dir;
reRoot(y, x); // x 是 y 的父节点
}
};
reRoot(0, -1); // 0 没有父节点
return answer;
}
};
// @lc code=end
复杂度分析:
时间复杂度:O(n),其中 n 是树的节点个数。DFS 两次,每次 DFS 会递归访问每个节点恰好一次,所以时间复杂度为 O(n)。
空间复杂度:O(n),其中 n 是树的节点个数。