Leetcode834. 树中距离之和

本文介绍了在LeetCode问题834中,如何使用换根DP优化计算树中节点间距离之和的问题,通过二叉树子树大小的计算原理推广到一般树,以及两种语言的代码实现,同时讨论了时间复杂度和空间复杂度。
摘要由CSDN通过智能技术生成

Every day a Leetcode

题目来源:834. 树中距离之和

解法1:换根 DP

题解:【图解】一张图秒懂换根 DP!(Python/Java/C++/Go/JS)

暴力做法是,以点 i 为为树根,从 i 出发对树进行深度优先搜索,那么 i 到 j 的距离就是 j 在这棵树的深度,所有点的深度之和就是 answer[i]。

但这样做,DFS 一次的时间是 O(n),n 个节点个点各 DFS 一次,总时间就是 O(n2),会超时。如何优化呢?

请添加图片描述

子树大小是怎么算的?

先说二叉树,子树 x 的大小等于左子树的大小,加上右子树的大小,再加上 1(节点 x 本身),那么后序遍历这棵树,就可以算出每棵子树的大小。然后推广到一般树,子树 x 的大小,等于 x 的所有儿子的子树大小之和,再加上 1(节点 x 本身)。

问:这种算法的本质是什么?

答:以图中的这棵树为例,从「以 0 为根」换到「以 2 为根」时,原来 2 的子节点还是 2 的子节点,原来 1 的子节点还是 1 的子节点,唯一改变的是 0 和 2 的父子关系。由此可见,一对节点的距离的「变化量」应该是很小的,那么找出「变化量」的规律,就可以基于 answer[0] 算出 answer[2] 了。这种算法叫做换根 DP。

代码:

/*
 * @lc app=leetcode.cn id=834 lang=cpp
 *
 * [834] 树中距离之和
 */

// @lc code=start

// 换根 DP(树型 DP 的变种)

class Solution
{
public:
    vector<int> sumOfDistancesInTree(int n, vector<vector<int>> &edges)
    {
        // g[x] 表示 x 的所有邻居
        vector<vector<int>> g(n);
        for (auto &edge : edges)
        {
            int x = edge[0], y = edge[1];
            g[x].push_back(y);
            g[y].push_back(x);
        }
        // size[i] 为 子树 i 的大小
        vector<int> size(n, 1); // 注意这里初始化成 1 了,下面只需要累加儿子的子树大小
        vector<int> answer(n);

        function<void(int, int, int)> dfs = [&](int x, int father, int depth)
        {
            answer[0] += depth; // depth 为 0 到 x 的距离
            // 遍历 x 的邻居 y
            for (int &y : g[x])
                if (y != father) // 避免访问父节点
                {
                    dfs(y, x, depth + 1); // x 是 y 的父节点
                    size[x] += size[y];   // 累加 x 的儿子 y 的子树大小
                }
        };

        dfs(0, -1, 0); // 0 没有父节点

        function<void(int, int)> reRoot = [&](int x, int father)
        {
            // 遍历 x 的邻居 y
            for (int y : g[x])
            {
                if (y != father) // 避免访问父节点
                {
                    answer[y] = answer[x] + n - 2 * size[y];
                    reRoot(y, x); // x 是 y 的父节点
                }
            }
        };

        reRoot(0, -1); // 0 没有父节点

        return answer;
    }
};
// @lc code=end

结果:

在这里插入图片描述

复杂度分析:

时间复杂度:O(n),其中 n 是树的节点个数。DFS 两次,每次 DFS 会递归访问每个节点恰好一次,所以时间复杂度为 O(n)。

空间复杂度:O(n),其中 n 是树的节点个数。

拓展题:2858. 可以到达每一个节点的最少边反转次数

题目链接:2858. 可以到达每一个节点的最少边反转次数

代码:

/*
 * @lc app=leetcode.cn id=2858 lang=cpp
 *
 * [2858] 可以到达每一个节点的最少边反转次数
 */

// @lc code=start
class Solution
{
public:
    vector<int> minEdgeReversals(int n, vector<vector<int>> &edges)
    {
        // g[x] 表示 x 的所有邻居
        vector<vector<pair<int, int>>> g(n);
        for (auto &edge : edges)
        {
            int x = edge[0], y = edge[1];
            // x->y 视为正向,标记为 1;反向标记为 -1
            g[x].push_back(pair<int, int>(y, 1));
            g[y].push_back(pair<int, int>(x, -1));
        }
        // size[i] 为 子树 i 的大小
        // vector<int> size(n, 1); // 注意这里初始化成 1 了,下面只需要累加儿子的子树大小
        vector<int> answer(n);

        function<void(int, int)> dfs = [&](int x, int father)
        {
            // 遍历 x 的邻居 y
            for (auto &[y, dir] : g[x])
                if (y != father) // 避免访问父节点
                {
                    answer[0] += dir < 0;
                    dfs(y, x); // x 是 y 的父节点
                }
        };

        dfs(0, -1); // 0 没有父节点

        function<void(int, int)> reRoot = [&](int x, int father)
        {
            // 遍历 x 的邻居 y
            for (auto &[y, dir] : g[x])
                if (y != father) // 避免访问父节点
                {
                    answer[y] = answer[x] + dir;
                    reRoot(y, x); // x 是 y 的父节点
                }
        };

        reRoot(0, -1); // 0 没有父节点

        return answer;
    }
};
// @lc code=end

复杂度分析:

时间复杂度:O(n),其中 n 是树的节点个数。DFS 两次,每次 DFS 会递归访问每个节点恰好一次,所以时间复杂度为 O(n)。

空间复杂度:O(n),其中 n 是树的节点个数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UestcXiye

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值