Leetcode743. 网络延迟时间

本文介绍了如何使用Dijkstra算法解决LeetCode题目743——网络延迟时间问题,包括朴素Dijkstra算法和堆优化版本。算法通过贪心策略找到从一个节点到其他节点的最短路径,特别关注了稠密图和稀疏图的处理方法,以及它们的时间和空间复杂度分析。
摘要由CSDN通过智能技术生成

Every day a Leetcode

题目来源:743. 网络延迟时间

本题需要用到单源最短路径算法 Dijkstra,现在让我们回顾该算法,其主要思想是贪心。

将所有节点分成两类:已确定从起点到当前点的最短路长度的节点,以及未确定从起点到当前点的最短路长度的节点(下面简称「未确定节点」和「已确定节点」)。

每次从「未确定节点」中取一个与起点距离最短的点,将它归类为「已确定节点」,并用它「更新」从起点到其他所有「未确定节点」的距离。直到所有点都被归类为「已确定节点」。

用节点 A「更新」节点 B 的意思是,用起点到节点 A 的最短路长度加上从节点 A 到节点 B 的边的长度,去比较起点到节点 B 的最短路长度,如果前者小于后者,就用前者更新后者。这种操作也被叫做「松弛」。

这里暗含的信息是:每次选择「未确定节点」时,起点到它的最短路径的长度可以被确定。

可以这样理解,因为我们已经用了每一个「已确定节点」更新过了当前节点,无需再次更新(因为一个点不能多次到达)。而当前节点已经是所有「未确定节点」中与起点距离最短的点,不可能被其它「未确定节点」更新。所以当前节点可以被归类为「已确定节点」。

解法1:朴素 Dijkstra 算法

适用于稠密图。

代码:

/*
 * @lc app=leetcode.cn id=743 lang=cpp
 *
 * [743] 网络延迟时间
 */

// @lc code=start
class Solution
{
private:
    const int inf = INT_MAX / 2;

public:
    int networkDelayTime(vector<vector<int>> &times, int n, int k)
    {
        vector<vector<int>> g(n, vector<int>(n, inf));
        for (auto &time : times)
        {
            int u = time[0] - 1, v = time[1] - 1;
            int w = time[2];
            g[u][v] = w;
        }
        // dist[i] 表示点 k 到其他节点的最短距离
        vector<int> dist(n, inf);
        dist[k - 1] = 0;
        vector<int> used(n);
        for (int i = 0; i < n; i++)
        {
            int x = -1;
            for (int y = 0; y < n; y++)
                if (!used[y] && (x == -1 || dist[y] < dist[x]))
                    x = y;
            used[x] = true;
            for (int y = 0; y < n; y++)
                dist[y] = min(dist[y], dist[x] + g[x][y]);
        }

        int ans = *max_element(dist.begin(), dist.end());
        return ans == inf ? -1 : ans;
    }
};
// @lc code=end

结果:

在这里插入图片描述

复杂度分析:

时间复杂度:O(n2+m),其中 n 是节点个数,m 是数组 times 的长度。

空间复杂度:O(n2),其中 n 是节点个数。

解法2:堆优化 Dijkstra 算法

适用于稀疏图。

寻找最小值的过程可以用一个最小堆来快速完成:

  • 一开始把 (dis[k],k) 二元组入堆。
  • 当节点 x 首次出堆时,dis[x] 就是写法一中寻找的最小最短路。
  • 更新 dis[y] 时,把 (dis[y],y) 二元组入堆。

注意,如果一个节点 x 在出堆前,其最短路长度 dis[x] 被多次更新,那么堆中会有多个重复的 x,并且包含 x 的二元组中的 dis[x] 是互不相同的(因为我们只在找到更小的最短路时才会把二元组入堆)。

所以写法一中的 used 数组可以省去,取而代之的是用出堆的最短路值(记作 dx)与当前的 dis[x] 比较,如果 dx>dis[x] 说明 x 之前出堆过,我们已经更新了 x 的邻居的最短路,所以这次就不用更新了,继续外层循环。

代码:

// 堆优化 Dijkstra(适用于稀疏图)

class Solution
{
private:
    const int inf = INT_MAX / 2;

public:
    int networkDelayTime(vector<vector<int>> &times, int n, int k)
    {
        vector<vector<pair<int, int>>> g(n); // 邻接表
        for (auto &time : times)
        {
            int u = time[0] - 1, v = time[1] - 1;
            int w = time[2];
            g[u].emplace_back(v, w);
        }
        // dist[i] 表示点 k 到其他节点的最短距离
        vector<int> dist(n, inf);
        dist[k - 1] = 0;
        priority_queue<pair<int, int>, vector<pair<int, int>>, greater<>> pq;
        pq.emplace(0, k - 1);
        while (!pq.empty())
        {
            auto [dx, x] = pq.top();
            pq.pop();
            if (dx > dist[x])
            { // x 之前出堆过
                continue;
            }
            for (auto &[y, d] : g[x])
            {
                int new_dist = dx + d;
                if (new_dist < dist[y])
                {
                    dist[y] = new_dist; // 更新 x 的邻居的最短路
                    pq.emplace(new_dist, y);
                }
            }
        }

        int ans = *max_element(dist.begin(), dist.end());
        return ans == inf ? -1 : ans;
    }
};

结果:

在这里插入图片描述

复杂度分析:

时间复杂度:O(mlog⁡m),其中 m 是数组 times 的长度。值得注意的是,如果输入的是稠密图,本写法的时间复杂度为 O(n2log⁡n),不如写法一。

空间复杂度:O(m),其中 m 是数组 times 的长度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UestcXiye

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值