面试算法题精讲:最长回文子串
题目来源:5. 最长回文子串
题目描述:
给你一个字符串 s,找到 s 中最长的回文子串。
如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。
解法1:动态规划
对于一个子串而言,如果它是回文串,并且长度大于 2,那么将它首尾的两个字母去除之后,它仍然是个回文串。
根据这样的思路,我们就可以用动态规划的方法解决本题。
我们用 dp[i][j] 表示 s[i…j] 是否是回文串。
状态转移方程:dp[i][j] = dp[i+1][j-1] ∧ (s[i] == s[j])
动态规划中的边界条件:
- dp[i][i] == true,对于长度为 1 的子串,它显然是个回文串。
- dp[i][i+1] = (s[i] == s[i+1]),对于长度为 2 的子串,只要它的两个字母相同,它就是一个回文串。
根据这个思路,我们就可以完成动态规划了,最终的答案即为所有 dp[i][j]=true 中 j−i+1(即子串长度)的最大值。注意:在状态转移方程中,我们是从长度较短的字符串向长度较长的字符串进行转移的,因此一定要注意动态规划的循环顺序。
我们使用2层循环,外层枚举子串的长度 len,内层枚举子串起点 i,子串的终点 j = i + len - 1。之后进行转移转移即可。
代码:
class Solution
{
public:
string longestPalindrome(string s)
{
// 特判
if (s.size() < 2)
return s;
int n = s.size(), maxLen = 1, begin = 0;
// 状态矩阵
vector<vector<int>> dp(n, vector<int>(n, false));
// dp[i][j] 表示 s[i...j] 是否是回文串
// 初始化:所有长度为 1 的子串都是回文串
for (int i = 0; i < n; i++)
dp[i][i] = true;
// 状态转移
for (int len = 2; len <= n; len++) // 枚举子串长度
for (int i = 0; i < n; i++) // 枚举左边界
{
int j = i + len - 1; // 计算右边界
if (j >= n) // 右边界越界
break;
if (s[i] != s[j])
dp[i][j] = false;
else
{
if (len <= 3)
dp[i][j] = true;
else
dp[i][j] = dp[i + 1][j - 1];
}
if (dp[i][j] == true && j - i + 1 > maxLen)
{
maxLen = j - i + 1;
begin = i;
}
}
return s.substr(begin, maxLen);
}
};
结果:
复杂度分析:
时间复杂度:O(n2),其中 n 是字符串 s 的长度。
空间复杂度:O(n2),其中 n 是字符串 s 的长度。
解法2:中心拓展算法
「中心扩散法」的基本思想是:遍历每一个下标,以这个下标为中心,利用「回文串」中心对称的特点,往两边扩散,看最多能扩散多远。
从每一个位置出发,向两边扩散即可。遇到不是回文的时候结束。
每个位置向两边扩散都会出现一个窗口大小(len = right - left)。如果 len>maxLen(用来表示最长回文串的长度),则更新 maxLen 的值。
因为我们最后要返回的是具体子串,而不是长度。因此,还需要记录一下 maxLen 时的起始位置 start。
代码:
/*
* @lc app=leetcode.cn id=5 lang=cpp
*
* [5] 最长回文子串
*/
// @lc code=start
class Solution
{
public:
string longestPalindrome(string s)
{
int n = s.length();
int start = 0, end = 0;
auto expendAroundCenter = [&](int left, int right) -> pair<int, int>
{
while (left >= 0 && right < n && s[left] == s[right])
{
left--;
right++;
}
return {left + 1, right - 1};
};
for (int i = 0; i < n; i++)
{
auto [left1, right1] = expendAroundCenter(i, i);
if (right1 - left1 > end - start)
{
start = left1;
end = right1;
}
auto [left2, right2] = expendAroundCenter(i, i + 1);
if (right2 - left2 > end - start)
{
start = left2;
end = right2;
}
}
int len = end - start + 1;
return s.substr(start, len);
}
};
// @lc code=end
结果:
复杂度分析:
时间复杂度:O(n2),其中 n 是字符串 s 的长度。
空间复杂度:O(1)。
解法3:Manacher 算法
算法详解:https://blog.csdn.net/dyx404514/article/details/42061017。
代码:
class Solution
{
private:
string manacher(string s)
{
// 特判
if (s.empty() || s.size() < 2)
return s;
// 对原始字符串 s 做处理,添加分隔符(例如:将 abc 变成 #a#b#c#)
string str = addBoundaries(s, '#');
int n = str.size();
// right 表示已经探测到的字符串最右边的可达范围
int right = 0;
// center 表示根据最右边的可达范围的中心对称位置
int center = 0;
int start = 0, maxLen = 0;
// p 数组记录所有已探测过的回文半径,后面我们再计算 i 时,根据 p[i_mirror] 计算 i
vector<int> p(n, 0);
// 从左到右遍历处理过的字符串,求每个字符的回文半径
for (int i = 0; i < n; i++)
{
// 根据i和right的位置分为两种情况:
// 1. i <= right,利用已知的信息来计算 i
// 2. i > right,说明 i 的位置时未探测过的,只能用中心探测法
if (right >= i)
{
// 这句是关键,不用再像中心探测那样,一点点的往左/右扩散,根据已知信息
// 减少不必要的探测,必须选择两者中的较小者作为左右探测起点
int minArmLen = min(right - i, p[2 * center - i]);
p[i] = expand(str, i - minArmLen, i + minArmLen);
}
else // i 落在 right 右边,是没被探测过的,只能用中心探测法
p[i] = expand(str, i, i);
// 大于right,说明可以更新最右端范围了,同时更新 center
if (i + p[i] > right)
{
center = i;
right = i + p[i];
}
// 找到了一个更长的回文半径,更新原始字符串的 start 位置
if (p[i] > maxLen)
{
maxLen = p[i];
start = (i - p[i]) / 2;
}
}
// 根据 start 和 maxLen ,从原始字符串中截取一段返回
return s.substr(start, maxLen);
}
// 辅函数 - 以s [left...right] 为起点,计算回文半径(可拓展的步数)
int expand(string s, int left, int right)
{
while (left >= 0 && right < s.size() && s[left] == s[right])
{
left--;
right++;
}
// 由于while循环退出后left和right各多走了一步,所以在返回的总长度时要减去2
return (right - left - 2) / 2;
}
// 辅函数 - 对原始字符串 s 进行预处理(添加分隔符)
string addBoundaries(string s, char divide)
{
if (s.empty())
return "";
string t;
for (char &c : s)
{
t += divide;
t += c;
}
t += divide;
return t;
}
public:
string longestPalindrome(string s)
{
return manacher(s);
}
};
结果:
复杂度分析:
时间复杂度:O(n),其中 n 是字符串 s 的长度。
空间复杂度:O(n),其中 n 是字符串 s 的长度。