Leetcode55. 跳跃游戏

Every day a Leetcode

题目来源:55. 跳跃游戏

解法1:动态规划

用 n 表示数组 nums 的长度。初始时位于下标 0,需要判断是否可以到达下标 n−1。

设 dp[i] 表示从下标范围 [0,i] 中的任意下标出发可以到达的最大下标。

对于 1≤i<n,如果可以从下标 0 到达下标 i,则可以从下标 i 到达不超过下标 i+nums[i] 的任意位置,因此可以从下标 0 到达不超过下标 i+nums[i] 的任意位置。为了判断是否可以到达下标 n−1,需要分别计算从每个下标出发可以到达的最大下标。

对于每个下标,需要首先判断是否可以从更小的下标到达该下标,然后计算从该下标出发可以到达的最大下标。

代码:

class Solution
{
public:
    bool canJump(vector<int> &nums)
    {
        int n = nums.size();
        // dp[i] 表示从下标范围 [0,i] 中的任意下标出发可以到达的最大下标
        vector<int> dp(n);
        // 初始化
        dp[0] = nums[0];
        // 状态转移
        for (int i = 1; i < n; i++)
        {
            if (dp[i - 1] < i)
                return false;
            dp[i] = max(dp[i - 1], i + nums[i]);
        }
        return dp[n - 1] >= n - 1;
    }
};

结果:

在这里插入图片描述

复杂度分析:

时间复杂度:O(n),其中 n 是数组 nums 的长度。

空间复杂度:O(n),其中 n 是数组 nums 的长度。

解法2:贪心

遍历数组 nums 的每一个元素,更新能跳到的最远值 max_far = max(max_far, i + nums[i]),只要 max_far >= n - 1,即可返回 true。

代码:

class Solution
{
public:
    bool canJump(vector<int> &nums)
    {
        int n = nums.size();
        int max_far = 0; // 目前能跳到的最远位置
        for (int i = 0; i < n; i++)
        {
            if (i <= max_far)
            {
                max_far = max(max_far, i + nums[i]);
                if (max_far >= n - 1)
                    return true;
            }
        }
        return false;
    }
};

结果:

在这里插入图片描述

复杂度分析:

时间复杂度:O(n),其中 n 是数组 nums 的长度。

空间复杂度:O(1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UestcXiye

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值