关于容斥原理

poj2773  http://poj.org/problem?id=2773

两个思路:1.与N互质的数具有周期性(也就是说,互质问题可与周期性问题联系起来),周期为N。

    2.利用容斥原理,可以求小于等于num且与N不互质的数(正难则反)。若与N不互质,则要选N的素因数。这里就可以对N的素因数运用容斥原理。即:

                      与N不互质的数 = Σ(以pi为约数的数的个数) - Σ(以pi*pj为约数的数的个数)+ Σ(以pi*pj*pk为约数的数的个数)...

代码(借助位运算来利用容斥原理,这里容易出错):

#include<cstdio>
using namespace std;
typedef __int64 ll;
#define N 1000
#define max(x,y) (x>y?x:y)
int num[N];
int deal(int l,int r,int n){
    if(l>r) return 0;
    int res=0,tmp,t;num[0]=0;
    for(int i=2;i*i<=n;++i){
        if(n%i) continue;
        num[++num[0]]=i;
        while(n%i==0) n/=i;
    }
    if(n>1) num[++num[0]]=n;
    for(int i=1;i<(1<<num[0]);++i){   //借助位运算来实现容斥原理的运用
        t=0;tmp=1;
        for(int j=0;j<num[0]&&(i>>j);++j){
            if((i>>j)&1){tmp=tmp*num[j+1];++t;}
        }
        if(t&1) res+=(r/tmp-(l-1)/tmp);
        else res-=(r/tmp-(l-1)/tmp);
    }
    return r-l+1-res;
}
int main(){
    int a,b,c,d,k,Case=1,t,R1,R2;ll ans;scanf("%d",&t);
    while(t--){
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);ans=0;
        R1=max(b,d);R2=b+d-R1;
        if(k==0) printf("Case %d: 0\n",Case++);
        else{
            for(int i=max(1/k,1);i<=R2/k;++i) ans+=(ll)deal(i,R1/k,i);
            printf("Case %d: %I64d\n",Case++,ans);
        }
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值