生物信息学之抗癌药物反应论文阅读四:MD-WDNN

该研究利用深度学习的MD-WDNN模型,结合基因组测序数据,预测结核病的药物耐药性。通过全基因组测序数据,模型能有效预测多药耐药(MDR)和广泛耐药(XDR)状态,提高了诊断准确性。研究强调了深度学习在多任务预测中的优势,尤其是在预测二线药物耐药性方面。尽管存在表型数据偏差和罕见突变识别不足的问题,但模型展示了对复杂遗传病因理解的潜力。
摘要由CSDN通过智能技术生成

论文地址:Deep learning predicts tuberculosis drug resistance status from genome sequencing data

基于深度学习和基因组测序数据的结核病耐药性预测研究

 

作者信息:

[1]哈佛医学院生物医学信息

[2]弗吉尼亚大学医学院

[3]分析机构

[4]关键路径研究所

[5]马萨诸塞州总医院肺科及危重

概念介绍:

菌株:任何由一个独立分离的单细胞通过繁殖而成的纯遗传型群体及其后代。

MDR:对利福平[RIF]和异烟肼[INH]具有耐药性。

XDR: 对一种二线注射药物耐药,如阿米卡星[AMK]、卡那霉素[KAN]或卡波[CAP],以及一种氟喹诺酮耐药,如莫西沙星[MOXI]、氧氟沙星[OFLX]

一线用药:根据患者病情可以首先选择的药物。

二线用药:一线用药耐药以后选择的药物

表型:具有特定基因型的个体,在一定环境条件下所表现出来的性状特征的总和

上位效应:一对基因显性基因的表现受到另一对非等位基因的作用。这种非等位基因间的抑制或遮掩作用叫上位效应

研究背景:

      结核病是全球十大死亡原因之一。抗生素的广泛使用导致耐药菌株的流行率增加。

      据世界卫生组织估计4.1%的新结核分枝杆菌临床分离MTB)是多药耐药MDR)的,大约9.5%MDR病例是广泛耐的( XDR )。

     48%的多药耐药结核病72%的广泛耐药结核病患者有不良的治疗结果

      诊断药物的耐药性仍是提供适当结核病治疗的阻碍。

常规培养和基于培养的抗微生物药敏试验:结核分枝杆菌体外生长缓慢,构成了相当大的生物危害,需要数月才能报告结果。

分子诊断:世界卫生组织批准的三种分子测试,GenXpert、基于RT-PCR的快速检测(针对RIF)、LPA。但是它们仍存在缺陷。

1.灵敏度有限,依赖少数几个基因位点。

2.没有检测到大多数罕见的基因变异。

3.仅检测5种抗结核药物的耐药性。

4.没有考虑到遗传背景和基因-基因相互作用等变量。

基因组测序:捕获了与耐药性有关的常见和罕见突变,成本低,速度快。但是,通过基因型数据预测表型的准确率仍与传统方法存在差距。

研究方法:

训练数据:汇集了来自世卫组织国家相关实验室和ReSeqTB知识库的数据。共包括 3,601MTB分离(其中1228株为多药耐药)。所有抗结核药物的敏感菌株比例均高于耐药菌株,不同药物的敏感菌株比例在53.0%88.1%之间

用于训练和交叉验证的分离株表型

      MTB分离株基因组的30启动子、基因间和编码区共发现6342个不同的插入、缺失和单核苷酸多态性(SNPs)。 在这些变异中有1663601个分离株中至少30

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值