洛谷 P1678 烦恼的高考志愿

本文探讨了如何利用二分查找优化算法解决高考志愿推荐问题,通过计算学生估分与学校分数线之间的最小差距,以求得最低不满意度总和。适合竞赛背景下的大学填报指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题链接:

P1678 烦恼的高考志愿 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

# 烦恼的高考志愿

## 题目背景

计算机竞赛小组的神牛V神终于结束了高考,然而作为班长的他还不能闲下来,班主任老t给了他一个艰巨的任务:帮同学找出最合理的大学填报方案。可是v神太忙了,身后还有一群小姑娘等着和他约会,于是他想到了同为计算机竞赛小组的你,请你帮他完成这个艰巨的任务。

## 题目描述

现有 $m(m\le100000)$ 所学校,每所学校预计分数线是 $a_i(a_i\le10^6)$。有 $n(n\le100000)$ 位学生,估分分别为 $b_i(b_i\le10^6)$。

根据n位学生的估分情况,分别给每位学生推荐一所学校,要求学校的预计分数线和学生的估分相差最小(可高可低,毕竟是估分嘛),这个最小值为不满意度。求所有学生不满意度和的最小值。

## 输入格式

第一行读入两个整数m,n。m表示学校数,n表示学生数。第二行共有m个数,表示m个学校的预计录取分数。第三行有n个数,表示n个学生的估分成绩。

## 输出格式

一行,为最小的不满度之和。

## 样例 #1

### 样例输入 #1

```
4 3
513 598 567 689
500 600 550
```

### 样例输出 #1

```
32
```

## 提示

数据范围:

对于30%的数据,m,n<=1000,估分和录取线<=10000;

对于100%的数据,n,m<=100,000,录取线<=1000000。

思路:

如果直接各自扫一遍,ON^2 显然超时。其实是很明显的二分题。关键便是在动态二分的过程中确定最小值即可。

AC代码:

#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
int n, m, cnt, tmin;
int a[N], b[N];
void bs(int x, int l, int r) {
	
	//对于每个b[i],在排好序的a[N]中查找最接近的即可。

	while (l <= r) {
		int mid = l + r >> 1;
		if (a[mid] == x)return;//此时差值为0,必然最小。
		else if (a[mid] > x) {
			tmin = min(tmin, abs(a[mid] - x));//查找的过程中更新min
			r = mid - 1;

		}
		else if (a[mid] < x) {
			tmin = min(tmin, abs(a[mid] - x));
			l = mid + 1;
		}

	}

	cnt += tmin;
}
int main() {
	cin >> m >> n;
	for (int i = 0; i < m; i++)cin >> a[i];
	for (int i = 0; i < n; i++)cin >> b[i];

	sort(a, a + m);

	for (int i = 0; i < n; i++)
	{
		tmin = 1e5;//每次查找前先给tmin赋一个比较大的值
		bs(b[i], 0, m - 1);

	}

	cout << cnt;
	return 0;
}

好的,下面是P1678 烦恼高考志愿的样例代码: ```c++ #include <iostream> #include <algorithm> using namespace std; const int N = 1e5 + 10; int n, m, s; int a[N], b[N]; bool check(int x) { int cnt = 0; for (int i = 0; i < n; i++) { cnt += upper_bound(b, b + m, x - a[i]) - b; // 统计符合要求的专业数量 } return cnt >= s; } int main() { cin >> n >> m >> s; for (int i = 0; i < n; i++) { cin >> a[i]; } for (int i = 0; i < m; i++) { cin >> b[i]; } sort(b, b + m); // 排序 int l = 0, r = 1e9; while (l < r) { int mid = l + r >> 1; if (check(mid)) r = mid; else l = mid + 1; } cout << l << endl; return 0; } ``` 这道题目的思路还是比较清晰的,我们要求的就是“每个考生至少能报考s个专业”,因此我们可以二分答案,每次判断一个数mid,看看是否存在至少s个专业的分数之和不超过mid。 具体实现上,我们可以用一个check函数统计符合要求的专业数量。对于每个考生,我们枚举所有专业的分数,然后用upper_bound函数在专业分数数组b中查找第一个大于mid减去该考生分数的元素的位置,这个位置之前的所有专业的分数之和都不超过mid减去该考生分数。统计每个考生符合要求的专业数量,最后判断所有考生的符合要求的专业数量是否不少于s即可。 需要注意的是,在check函数中我们使用的是upper_bound函数而不是lower_bound函数,因为题目中要求的是“每个考生至少能报考s个专业”,因此我们需要找到第一个大于mid减去该考生分数的元素的位置,而不是第一个大于或等于mid减去该考生分数的元素的位置。 另外,我们在二分答案之前要对专业分数数组b进行排序,这样才能使用upper_bound函数进行二分查找。 最后,输出的答案应该是l而不是r。因为当l == r时,二分查找已经结束,此时l和r都是符合要求的答案,但是题目要求输出最小的符合要求的答案,因此应该输出l。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Prudento

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值