原题链接:
P1678 烦恼的高考志愿 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
# 烦恼的高考志愿
## 题目背景
计算机竞赛小组的神牛V神终于结束了高考,然而作为班长的他还不能闲下来,班主任老t给了他一个艰巨的任务:帮同学找出最合理的大学填报方案。可是v神太忙了,身后还有一群小姑娘等着和他约会,于是他想到了同为计算机竞赛小组的你,请你帮他完成这个艰巨的任务。
## 题目描述
现有 $m(m\le100000)$ 所学校,每所学校预计分数线是 $a_i(a_i\le10^6)$。有 $n(n\le100000)$ 位学生,估分分别为 $b_i(b_i\le10^6)$。
根据n位学生的估分情况,分别给每位学生推荐一所学校,要求学校的预计分数线和学生的估分相差最小(可高可低,毕竟是估分嘛),这个最小值为不满意度。求所有学生不满意度和的最小值。
## 输入格式
第一行读入两个整数m,n。m表示学校数,n表示学生数。第二行共有m个数,表示m个学校的预计录取分数。第三行有n个数,表示n个学生的估分成绩。
## 输出格式
一行,为最小的不满度之和。
## 样例 #1
### 样例输入 #1
```
4 3
513 598 567 689
500 600 550
```
### 样例输出 #1
```
32
```
## 提示
数据范围:
对于30%的数据,m,n<=1000,估分和录取线<=10000;
对于100%的数据,n,m<=100,000,录取线<=1000000。
思路:
如果直接各自扫一遍,ON^2 显然超时。其实是很明显的二分题。关键便是在动态二分的过程中确定最小值即可。
AC代码:
#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
int n, m, cnt, tmin;
int a[N], b[N];
void bs(int x, int l, int r) {
//对于每个b[i],在排好序的a[N]中查找最接近的即可。
while (l <= r) {
int mid = l + r >> 1;
if (a[mid] == x)return;//此时差值为0,必然最小。
else if (a[mid] > x) {
tmin = min(tmin, abs(a[mid] - x));//查找的过程中更新min
r = mid - 1;
}
else if (a[mid] < x) {
tmin = min(tmin, abs(a[mid] - x));
l = mid + 1;
}
}
cnt += tmin;
}
int main() {
cin >> m >> n;
for (int i = 0; i < m; i++)cin >> a[i];
for (int i = 0; i < n; i++)cin >> b[i];
sort(a, a + m);
for (int i = 0; i < n; i++)
{
tmin = 1e5;//每次查找前先给tmin赋一个比较大的值
bs(b[i], 0, m - 1);
}
cout << cnt;
return 0;
}