数据结构(十)

04-树5 Root of AVL Tree(25 分)

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

 

 

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print the root of the resulting AVL tree in one line.

Sample Input 1:

5
88 70 61 96 120

Sample Output 1:

70

Sample Input 2:

7
88 70 61 96 120 90 65

Sample Output 2:

88

#include <stdio.h>  
#include <stdlib.h>  
  
typedef struct AVLNode *AVLTree;  
typedef struct AVLNode *Position;  
struct AVLNode {  
    int Data;  
    int Height;  
    AVLTree Left;  
    AVLTree Right;  
};  
  
AVLTree Insert(int X, AVLTree T);  
int GetHeight(Position T);  
int Max(int a, int b);  
Position SingleLeft(Position K);  
Position SingleRight(Position K);  
Position DoubleLeft(Position K);  
Position DoubleRight(Position K);  
  
int main(void) {  
    AVLTree T = NULL;  
    int n;  
    scanf("%d", &n);  
    while (n--) {  
        int x;  
        scanf("%d", &x);  
        T=Insert(x, T);  
    }  
    if (T)  
        printf("%d", T->Data);  
    return 0;  
}  
  
AVLTree Insert(int X, AVLTree T) {  
    if (T == NULL) {  
        T = (AVLTree)malloc(sizeof(struct AVLNode));  
        T->Data = X;  
        T->Height = 0;  
        T->Left = T->Right = NULL;  
    }  
    else if (X < T->Data) {  
        T->Left = Insert(X, T->Left);  
        if (GetHeight(T->Left) - GetHeight(T->Right) == 2) {  
            if (X < T->Left->Data)  
                T = SingleLeft(T);  
            else  
                T = DoubleLeft(T);  
        }  
    }  
    else if (X > T->Data) {  
        T->Right = Insert(X, T->Right);  
        if (GetHeight(T->Right) - GetHeight(T->Left) == 2) {  
            if (X > T->Right->Data)  
                T = SingleRight(T);  
            else  
                T = DoubleRight(T);  
        }  
    }  
    T->Height = Max(GetHeight(T->Left), GetHeight(T->Right)) + 1;  
    return T;  
}  
  
int GetHeight(Position T) {  
    if (!T)  
        return -1;  
    else  
        return T->Height;  
}  
  
int Max(int a, int b) {  
    return (a > b) ? a : b;  
}  
  
Position SingleLeft(Position K) {  
    Position Tmp;  
    Tmp = K;  
    K = K->Left;  
    Tmp->Left = K->Right;  
    K->Right = Tmp;  
    Tmp->Height = Max(GetHeight(Tmp->Left), GetHeight(Tmp->Right)) + 1;  
    K->Height = Max(GetHeight(K->Left), GetHeight(K->Right)) + 1;  
    return K;  
}  
  
Position SingleRight(Position K) {  
    Position Tmp;  
    Tmp = K;  
    K = K->Right;  
    Tmp->Right = K->Left;  
    K->Left = Tmp;  
    Tmp->Height = Max(GetHeight(Tmp->Left), GetHeight(Tmp->Right)) + 1;  
    K->Height = Max(GetHeight(K->Left), GetHeight(K->Right)) + 1;  
    return K;  
}  
  
Position DoubleLeft(Position K) {  
    K->Left = SingleRight(K->Left);   
    return SingleLeft(K);  
}  
  
Position DoubleRight(Position K) {  
    K->Right = SingleLeft(K->Right);  
    return SingleRight(K);  
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值