06-图1 列出连通集(25 分)
给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
输出格式:
按照"{ v1 v2 ... vk }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
#define MaxNode 10
typedef struct
{
int value[MaxNode][MaxNode];
int N;
int M;
}Graph;
void DFS(vector<int> &flag,Graph &G,int node)//图的深度优先遍历
{
flag[node]=1;
cout<<" "<<node;
for (int i=0; i<G.N; ++i)
{
if (G.value[node][i]==1 && flag[i]==0)
{
DFS(flag,G,i);
}
}
}
void BFS(vector<int> &flag,queue<int> &Q,Graph &G,int node)//图的广度优先遍历
{
flag[node]=1;
Q.push(node);
int temp=0;
while (!Q.empty())
{
temp=Q.front();
cout<<" "<<temp;
Q.pop();
for (int i=0; i<G.N; ++i)
{
if (G.value[temp][i]==1 && flag[i]==0)
{
Q.push(i);
flag[i]=1;
}
}
}
}
int main()
{
//Get the input
int N=0,M=0;
cin>>N>>M;
Graph G;
G.N=N;
G.M=M;
int x=0,y=0;
for (int i=0; i<N; ++i)//初始化图的邻接矩阵
{
for (int k=0; k<N; ++k) {
G.value[i][k]=0;
}
}
for (int i=0; i<M; ++i)//修改图的邻接矩阵
{
cin>>x>>y;
G.value[x][y]=1;
G.value[y][x]=1;
}
//根据深度优先遍历输出图的联通集团
vector<int> flag(N,0);//结点是否被访问的标记向量
for (int i=0; i<N; ++i)
{
if (flag[i]==0)
{
cout<<"{";
DFS(flag,G,i);
cout<<" }"<<endl;
}
}
//根据广度优先遍历输出图的联通集团
vector<int> flag1(N,0);//结点是否被访问的标记向量
queue<int> Q;
for (int i=0; i<N; ++i)
{
if (flag1[i]==0)
{
cout<<"{";
BFS(flag1,Q,G,i);
cout<<" }"<<endl;
}
}
}