数据结构(十八)

06-图1 列出连通集(25 分)

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:

按照"{ v1 v2 ... vk }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:

8 6
0 7
0 1
2 0
4 1
2 4
3 5

输出样例:

{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }

#include <iostream>  
#include <vector>  
#include <queue>  
using namespace std;  
  
#define MaxNode 10  
  
typedef struct  
{  
    int value[MaxNode][MaxNode];  
    int N;  
    int M;  
}Graph;  
  
void DFS(vector<int> &flag,Graph &G,int node)//图的深度优先遍历  
{  
    flag[node]=1;  
    cout<<" "<<node;  
    for (int i=0; i<G.N; ++i)  
    {  
        if (G.value[node][i]==1 && flag[i]==0)  
        {  
            DFS(flag,G,i);  
        }  
    }  
}  
  
void BFS(vector<int> &flag,queue<int> &Q,Graph &G,int node)//图的广度优先遍历  
{  
      
    flag[node]=1;  
    Q.push(node);  
    int temp=0;  
    while (!Q.empty())  
    {  
        temp=Q.front();  
        cout<<" "<<temp;  
        Q.pop();  
        for (int i=0; i<G.N; ++i)  
        {  
            if (G.value[temp][i]==1 && flag[i]==0)  
            {  
                Q.push(i);  
                flag[i]=1;  
            }  
        }  
    }  
}  
  
int main()  
{  
    //Get the input  
    int N=0,M=0;  
    cin>>N>>M;  
    Graph G;  
    G.N=N;  
    G.M=M;  
      
    int x=0,y=0;  
    for (int i=0; i<N; ++i)//初始化图的邻接矩阵  
    {  
        for (int k=0; k<N; ++k) {  
            G.value[i][k]=0;  
        }  
    }  
    for (int i=0; i<M; ++i)//修改图的邻接矩阵  
    {  
        cin>>x>>y;  
        G.value[x][y]=1;  
        G.value[y][x]=1;  
    }  
      
    //根据深度优先遍历输出图的联通集团  
    vector<int> flag(N,0);//结点是否被访问的标记向量  
    for (int i=0; i<N; ++i)  
    {  
        if (flag[i]==0)  
        {  
            cout<<"{";  
            DFS(flag,G,i);  
            cout<<" }"<<endl;  
        }  
    }  
      
    //根据广度优先遍历输出图的联通集团  
    vector<int> flag1(N,0);//结点是否被访问的标记向量  
    queue<int> Q;  
    for (int i=0; i<N; ++i)  
    {  
        if (flag1[i]==0)  
        {  
            cout<<"{";  
            BFS(flag1,Q,G,i);  
            cout<<" }"<<endl;  
        }  
    }  
      
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值