题目
给你一个 m x n 的矩阵,最开始的时候,每个单元格中的值都是 0。
另有一个二维索引数组 indices,indices[i] = [ri, ci] 指向矩阵中的某个位置,其中 ri 和 ci 分别表示指定的行和列(从 0 开始编号)。
对 indices[i] 所指向的每个位置,应同时执行下述增量操作:
ri 行上的所有单元格,加 1 。
ci 列上的所有单元格,加 1 。
给你 m、n 和 indices 。请你在执行完所有 indices 指定的增量操作后,返回矩阵中 奇数值单元格 的数目。
示例 1:
输入:m = 2, n = 3, indices = [[0,1],[1,1]]
输出:6
解释:最开始的矩阵是 [[0,0,0],[0,0,0]]。
第一次增量操作后得到 [[1,2,1],[0,1,0]]。
最后的矩阵是 [[1,3,1],[1,3,1]],里面有 6 个奇数。
示例 2:
输入:m = 2, n = 2, indices = [[1,1],[0,0]]
输出:0
解释:最后的矩阵是 [[2,2],[2,2]],里面没有奇数。
提示:
1 <= m, n <= 50
1 <= indices.length <= 100
0 <= ri < m
0 <= ci < n
代码
package dayLeetCode;
public class dayleetcode1252 {
// 直接模拟
public int oddCells(int m, int n, int[][] indices) {
int[][] nums = new int[m][n];
for (int i = 0; i < indices.length; i++){
for (int j = 0; j < n; j++){
nums[indices[i][0]][j]++;
}
for (int j = 0; j < m; j++){
nums[j][indices[i][1]]++;
}
}
int ans = 0;
for (int i = 0; i < m; i++){
for (int j = 0; j < n; j++){
if (nums[i][j] % 2 == 1){
ans++;
}
}
}
return ans;
}
public static void main(String[] args) {
dayleetcode1252 obj = new dayleetcode1252();
System.out.println(obj.oddCells(2, 3, new int[][]{{0, 1}, {1, 1}}));
}
}