最大子段和的三种求法

这里注意子段是连续的,子序列是不连续的。

(1)暴力求解

//最大子段和 暴力 直接三层循环 暴力所有区间 然后找最大的子段和 
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>

using namespace std;
int a[2000];

int main(){
    ios::sync_with_stdio(false);
    cin.tie();
    int n;
    cin >> n;
    for(int i = 0;i < n; i++)
        cin>>a[i];
    int ans =0;
    for(int i = 0;i < n;i++){
        for(int j =i ; j<n ;j++){
            int sum = 0;
            for(int k = i;k<=j;k++){
                sum +=a[k];
            }
            ans=max(sum,ans);
        }
    }


    cout<< ans <<endl;
    return 0;
}
//最大子段和 暴力优化
//a(i~j)可分解为 a(j)+a(i~j-1) 然后发现可以将刚刚的最里层循环给省掉 从而节省一部分时间
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>

using namespace std;
int a[2000];

int main()
{
    ios::sync_with_stdio(false);
    cin.tie();
    int n;
    cin >> n;
    for(int i = 0; i < n; i++)
        cin>>a[i];
    int ans =0;
    for(int i = 0; i < n; i++)
    {
        int sum = 0;
        for(int j =i ; j<n ; j++)
        {
            sum +=a[j];
            ans=max(sum,ans);
        }
    }
    cout<< ans <<endl;
    return 0;
}

(2)采用分治算法的思想

a[0:n-1]可以分为 a[0:n/2] 和 a[n/2+1:n-1]两端 则a[1:n]的最大子段和有以下三种情况

1.a[0:n-1]的最大子段和 与 a[0:n/2]的最大子段和相同    递归即可求解

2.a[0:n-1]的最大子段和 与 a[n/2+1:n-1]的最大子段和相同    递归即可求解

3.a[0:n-1]的最大子段和 为 sum(ak)    k从i到j  1<=i<=n/2,n/2+1<=j<=n    很明显 a[n/2]和a[n/2+1]在最优子序列里。所以可以在a[0:n/2]中计算出 sl=max (sum(ak))  k从i到n/2 0<=i<=n/2 同理a[n/2+1:n]中计算出 sr=max (sum(ak))  k从n/2+1到n n/2+1<=i<=n-1

//最大子段和 分治写法
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>

using namespace std;
int a[2000];
int f(int l,int r){
    int sum = 0;
    if(l==r)
        sum=max(a[l],0);
    else{
        int mid = (floor)((l+r)/2);
        int lsum = f(l,mid);
        int rsum = f(mid+1,r);
        int sl= 0;
        int tmp = 0;
        for(int i = mid; i >= l; i--){
            tmp += a[i];
            sl=max(sl,tmp);
        }
        tmp = 0;
        int sr = 0;
        for(int i=mid + 1;i <= r; i++){
            tmp += a[i];
            sr=max(sr,tmp);
        }
        sum=max(sl+sr,max(lsum,rsum));
    }
    return sum;
}
int main(){
    ios::sync_with_stdio(false);
    cin.tie();
    int n;
    cin >> n;
    for(int i = 0;i < n; i++)
        cin>>a[i];
    int ans = f(0,n-1);
    cout<< ans <<endl;
    return 0;
}

(3)dp解法

拿组样例直接跑出动态转移方程即可 然后每次找最大

#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
#define ll long long

const int N=1e5+6;
ll dp[N];

int main(){

    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    cin>>n;
    memset(dp,0,sizeof(dp));
    ll maxans = -1;
    int a;
    for(int i=0;i<n;i++){
        cin>>a;
        dp[i]=max(dp[i],dp[i-1]+a);
        maxans=max(maxans,dp[i]);
    }
    cout << maxans << endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值