GAN公式推导

真实数据的分布 生成器生成的分布 噪音Z的分布 生成器,使噪音的分布收敛到真实数据的分布 生成器的输出 判别器,区分真实数据和生成数据 x是真实数据而不是生成数据的概率 定义鉴别模型 If , D(x) = 1, is the maximum 当鉴别模型输出D(...

2019-07-03 15:06:35

阅读数 13

评论数 0

计算机论文网址

https://dblp.uni-trier.de/ https://arxiv.org/ https://www.sciencedirect.com/ https://www.researchgate.net/directory/publications https://cn.bing....

2019-04-01 18:55:16

阅读数 27

评论数 0

padding填充same 和valid两种方式

卷积操作会使图像变小,为了图像卷积后大小不变,需要填充0,我一直以为只要padding=‘same’,卷积后大小就不变,现在发现应该不对劲。W 表示图片大小,F表示卷积核大小,S表示stride 当stride=[1,1,1,1]时,padding = ‘same’卷积操作后图片大小不变,需要填...

2019-03-08 15:24:50

阅读数 505

评论数 0

python读取CIFAR数据集

CIFAR10/100数据集链接地址:http://www.cs.toronto.edu/~kriz/cifar.html 读取数据集函数 import numpy as np import os #网站给出的读取CIFAR10的函数 def unpickle(file): impo...

2019-03-08 09:42:10

阅读数 147

评论数 0

目标检测框架

目标检测的框架图 来自论文:Deep Learning for Generic Object Detection: A Survey

2019-03-05 10:37:17

阅读数 106

评论数 0

RCNN等目标检测框架

原文链接:https://kuaibao.qq.com/s/20180723B05TXK00?refer=cp_1026 本文用于学习交流,如果侵犯作者权益,将立即删除。 一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD 文章来源:企鹅号 - 软...

2019-03-01 16:08:01

阅读数 33

评论数 0

RCNN和SPPnet

RCNN的提出首次利用了CNN来提取图片特征,大大提高了检测精度。 整体思路:输入一张图片,selective search方法提取2000个proposal region,由于CNN输入图片的大小是固定的,所以需要把proposal region变成同样的大小(比如227x227),然后通过五...

2019-02-28 09:20:28

阅读数 25

评论数 0

NMS

非极大抑制:用于目标检测中删除重复的框 输入:多个检测的边框,每个边框有得分 输出:最好的边框 对于同一张人脸,可能会存在很多个边界框(每一个框都带有一个分类器得分),我们的目标是,使用NMS抑制那些冗余的框,抑制的过程是一个迭代-遍历-消除的过程。 1.将所有框的得分排序,选中最高分及其...

2019-02-14 10:36:33

阅读数 46

评论数 0

Accuracy 和 Precision

True Positive :判断为真,实际为真的样本 False Positive :判断为真,实际为假的样本 True Negative :判断为假,实际为假的样本 False Negative :判断为假,实际为真的样本 精度 Precision=TP/(TP+FP) 召回...

2019-02-14 09:43:23

阅读数 66

评论数 0

计算机视觉任务

图像分类 目标检测 目标识别 语义分割 实例分割  

2019-02-11 18:39:40

阅读数 72

评论数 0

多层感知器(MLP)

多层感知器             多层感知器(Multilayer Perceptron,缩写MLP)是一种前向结构的人工神经网络,映射一组输入向量到一组输出向量。MLP可以被看作是一个有向图,由多个的节点层所组成,每一层都全连接到下一层。除了输入节点,每个节点都是一个带有非线性激活函数的神经...

2019-02-09 14:29:14

阅读数 704

评论数 0

最优化问题的求解分类

通常需要求解的最优化问题有如下几类: 无约束优化问题,可以写为: 有等式约束的优化问题,可以写为:   有不等式约束的优化问题,可以写为:额 对于第1类的优化问题,使用的方法为费马大定理(Fermat) 对于第2类的优化问题,使用的方法是拉格朗日乘子法(Lagrange Mul...

2019-02-09 10:10:19

阅读数 96

评论数 0

Gram矩阵的理解

Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature map中,每一个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字就代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼...

2019-02-04 14:08:29

阅读数 240

评论数 0

深度学习中预训练和微调的个人理解

pre-training就是把一个已经训练好的图像分类的模型的参数,应用到另一个类似任务上作为初始参数,这样之前训练模型的过程就叫做预训练,fine tuning就是在训练新任务的过程中慢慢调整参数叫做微调。 这种情况大多数应用于迁移学习当中,当新任务的数据量较小时,之前类似的任务数据量较多时,...

2019-01-21 14:31:12

阅读数 941

评论数 0

KL散度、JS散度、交叉熵

     KL散度又叫做相对熵,用来表示两个函数的差异性,主要有以下三条结论。 对于两个完全相同的函数,它们的相对熵为0。 相对熵越大,两个函数的差异性越大。 对于概率分布或者概率密度函数,如果取值均大于零,相对熵可以度量两个随机分布的差异性。 具有不对称性。 JS散度是KL散度的一种...

2019-01-18 18:45:03

阅读数 40

评论数 0

TensorFlow_GPU在Windows上的安装

踩了一下午的坑,被大佬几句话就给点明白了 我的电脑联想win10.显卡gtx1050,cuda9.0,cudnn7.4.1.5,TensorFlow-GPU1.8.0,anaconda4.4.10(这个应该关系不大)之前主要是安装的这些东西不是配套的,所以如果大家安装失败了可能只是安装的版本不对...

2019-01-16 18:21:03

阅读数 27

评论数 0

GAN目标函数的理解

  对于这个公式的理解,辨别函数D希望能使真实数据D(x)概率更大,D(G(z))更小,所以对于D来说,希望这个目标函数值更大,生成函数G希望G(z)更接近x,使得D(G(Z))更大,这时目标函数值更小。 ...

2019-01-15 12:30:34

阅读数 577

评论数 0

信息的度量(信息熵)

信息熵:一条信息的信息量和其不确定性有着直接的关系,比如我们想弄清楚一个非常不确定的事需要大量的信息,可以认为信息量就是不确定性的多少。 比如错过了世界杯,想要猜32个球队哪只是冠军,可以先问是1-16吗,假如猜对了,可以继续问1-8吗,这样就需要五次就可以知道哪个球队是冠军,所以谁是冠军这个信...

2019-01-13 21:04:30

阅读数 64

评论数 0

01背包问题代码实现

基本公式: if (背包体积j小于物品i的体积)            array[i][j] = array[i-1][j]       //背包装不下第i个物体,最优解为前i个物体的解 else            array[i][j] = max(array[i-1][j], a...

2018-12-23 19:06:24

阅读数 67

评论数 0

KMP算法实现

KMP算法是一种改进的字符串匹配算法,KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的。具体实现就是实现一个next()函数,函数本身包含了模式串的局部匹配信息。 public static int searchKMP(String s1,String...

2018-12-23 15:38:29

阅读数 27

评论数 0

提示
确定要删除当前文章?
取消 删除