Description
【题目背景】
小Q最近喜欢上了一款游戏,名为《舰队connection》,在游戏中,小Q指挥强大的舰队南征北战,从而成为了一名dalao。在游戏关卡的攻略中,可能由于作战过程中某艘船受到严重损伤,为避免沉没而被迫进行返航,这种情况大家称为这艘船“假摔”。小Q最喜欢使用的一艘战舰代号为P01,但是最近这艘船总是用各种不同的姿势假摔,于是小Q打算研究一下原因。
【题意描述】
P01的装甲可以近似看作一个n*m的矩阵,每个位置上的数字代表这个位置装甲的强度。当受到炮击时,防御力为被炮击的部分的所有位置强度之和。最近小Q发现,敌方有一种船只被称为ENE,它可以发射不同形状的炮弹,以达到攻击装甲最薄弱处的目的。P01已经被连续k次用不同方式打成了严重损伤(假摔),于是小Q打算分析一下ENE的攻击力。为了简单起见,我们作如下假设:
1、ENE的炮弹形状无论如何变化,火力值都为一个定值(整数,未知)
2、ENE的炮弹形状只能是长方形(ENE:呵呵),且由于口径的限制,炮弹不能太小(具体来说,对于每一发炮弹长xi宽yi,有xmin<=xi<=n,ymin<=yi<=m)
3、当ENE的炮击命中P01的某处装甲时,被命中部分的强度之和为P01的防御力,此时,ENE的火力必须严格大于P01的防御力,才能将其击穿并造成严重损伤(假摔)。
然而,小Q并没有得到详细的中弹数据,只知道P01用k种不同的方式假摔过。两种假摔方式不同,当且仅当受到炮击的位置不完全相同。因此,不同形状的炮弹击穿护甲时必定可以造成不同的假摔方式,而相同形状的炮弹在不同的位置击穿护甲也能造成不同的假摔方式。现在,小Q想估计ENE的火力最低是多少。于是,这个任务被交给了你。
举例而言,假设P01的护甲为3*4:
0 1 3 7
1 1 5 5
7 6 9 6
如果ENE的口径至少为2*2,那么直接使用2*2的炮弹攻击左上角2*2的装甲时,只要火力>=4即可造成一种假摔。如果想造成k=3种不同的假摔方式,至少要拥有12的火力,此时可以造成如下三种假摔方式:
1、2*2炮弹,攻击有数字的部分,装甲值为3
0 1 - -
1 1 - -
2、2*2炮弹,攻击有数字的部分,装甲值为10
- 1 3 -
- 1 5 -
3、2*3炮弹,攻击有数字的部分,装甲值为11
0 1 3 -
1 1 5 -
可以证明,火力小于12时,无法造成3种不同的假摔方式,所以ENE的火力至少应为12。
Input
第一行,五个数n, m, xmin, ymin, k,空格分隔。
接下来n行,每行m个数,空格分隔,表示P01的装甲。
1<=n,m<=1000,1<=xmin<=n, 1<=ymin<=m, 1<=k<=250000,装甲值为不超过2000的非负整数。
保证火力为无穷大的ENE可以造成k种不同的假摔方式。
Output
仅一行,一个数,表示ENE的火力最低值。
Solution
好长好长的题面啊……
枚举所有的符合大小要求的最小的矩阵,塞进堆里。
每次取出最小的那个,然后向多一行或者多一列拓展。
(运算中用了PQ和map,“<”的问题坑死了= =)
(还被卡常了QAQ……进队和出队时判重运算量的期望有差异的)
#include<stdio.h>
#include<map>
#include<queue>
#define N 1005
using namespace std;
int n,m,mx,my,k,s[N][N];
struct matrix
{
int a,b,c,d;
inline int size(){return s[c][d]-s[c][b-1]-s[a-1][d]+s[a-1][b-1];}
friend bool operator < (matrix a,matrix b)
{
if(a.size()!=b.size()) return b.size()<a.size();
if(a.a!=b.a) return a.a<b.a;
if(a.b!=b.b) return a.b<b.b;
if(a.c!=b.c) return a.c<b.c;
if(a.d!=b.d) return a.d<b.d;
return 0;
}
}A;
map<matrix,bool> Map;
priority_queue<matrix> Q;
int main()
{
scanf("%d%d%d%d%d",&n,&m,&mx,&my,&k);
for (int i=1;i<=n;i++) for (int j=1;j<=m;j++)
{
scanf("%d",&s[i][j]);
s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1];
}
for (int i=1;i+mx-1<=n;i++) for (int j=1;j+my-1<=m;j++) Q.push((matrix){i,j,i+mx-1,j+my-1});
while (k--)
{
A=Q.top();Q.pop();
if (Map[A]){k++;continue;}
Map[A]=1;
if (A.c<n) Q.push((matrix){A.a,A.b,A.c+1,A.d});
if (A.d<m) Q.push((matrix){A.a,A.b,A.c,A.d+1});
}
printf("%d",A.size()+1);
}