早上10点的笔试,晕的要死,竟然没ak。。。都是因为第二题用了自己不熟悉的指针,一直找错。。
#include <iostream>
#include<cstring>
#include<cmath>
#include<string>
#include<map>
#include<algorithm>
#include<stdio.h>
using namespace std;
int n,m,c;
int x,y,z;
double a[101001];
const double eps=1e-3;
struct node
{
char val;
node *next;
node(char s):val(s),next(NULL){}
};
void work(node *s)
{
int sum=0;
node *s1=s;
int flag=0;
while(s->val){
while(s->next!=NULL){
if(s->next->next==NULL)break;
if((s->val==s->next->val)&&(s->val==s->next->next->val)){
s->next=s->next->next;
}
else break;
}
while(s->next!=NULL){
if(s->next->next==NULL)break;
if(s->next->next->next==NULL)break;
if((s->val==s->next->val)&&(s->next->next->val==s->next->next->next->val)){
s->next->next=s->next->next->next;
}
else break;
}
if(s->next!=NULL)s=s->next;
else break;
}
while(s1->val){
printf("%c",s1->val);
if(s1->next!=NULL)s1=s1->next;
else break;
}
printf("\n");
}
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++){
char ss[100000];
scanf("%s",ss);
node *p=new node('0');
node *p1=p;
for(int j=0;j<strlen(ss);j++){
node *pp=new node(ss[j]);
p->next=pp;
p=p->next;
}
work(p1->next);
}
return 0;
}
偷个懒,直接转载别人的吧
作者:牛客975268537号
链接:https://www.nowcoder.com/discuss/163780
来源:牛客网
第一题,大水题,直接上代码:
1 2 3 4 5 |
|
第二题,比较简单,题目的中的两个判断条件,都只跟前2-3位字符有关。
思路:逐个判断字符,根据两个条件判断是否可以加到结果字符串中
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
第三题,Python挂掉,C++通过(不知道为什么字体变色了- -)
思路:从未分配奖品的人中选取分数最小的人,然后判断她两边的人是否分配了奖品
情况1. 如果两边都已经分配奖品,当前位置的分数肯定比两边大(结合情况2,即可简单证明),此时取两边奖品最大值+1即可。
情况2. 如果有未分配奖品的方向:当前位置分配奖品数1,沿着未分配的方向,依次分配,直到当前结点大于后继结点。
比如:分数 为 1 -> 2 -> 2 -> 5 -> 3
那么:奖品 为 1 -> 2 -> 1 -> 不分配 (遇到相同可以重置为1)
多说一句,如果一个方向分配,另一个方向未分配,则分配过奖品方向的那个位置的分数,肯定比当前位置大,可简单证明。
依次取分数最小的位置,不断遍历即可,复杂度(排序 NlogN, 遍历O(n)),故NlogN
代码,python 只过了11%数据,只好用C++重写了一遍:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
第四题,被数据量吓到了,但是这个数据量,肯定要二分长度,简单算下N*log(L)应该是可以过,所以二分最大长度,朴素的check是否满足就可以了
思路:能否等分出m个长度为L的绳子,在l ∈ [0, L] 上是个不减问题,即如果某个满足此条件的最大位置为l,则大于l的无法等分,小于l的可以等分
因此,二分满足题意的L,找到最大位置判断即可,复杂度已经算过是OK的,注意停止条件和输出位数有关;以及边界问题(r减 l不增,因为k是满足的)
代码,怕python不过,直接c++了:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
|