使用sklearn轻松实现数据转换

机器学习在建模之前,需要做数据准备。数据准备的过程主要包括3个步骤:

  • 数据选择
  • 数据预处理
  • 数据转换

本文会告诉你两种方法,即如何使用Python的Scikit-Learn库进行简单的数据转换。

一、数据缩放

你的预处理数据集中可能包含各种各样、不同比例的特征字段,比如美元、千克、价格,有的特征列数值范围在100以内,有的却达到几百万,差异很大。

很多机器学习模型不希望有这样大的差异,如果数据集各个属性之间的数值差异越小,则模型表现的会越好。这里不一概而论,具体原因小伙伴们自行探索下。

方法1:数据归一化

数据归一化是指将原始数据缩放到0和1之间。

对于依赖于值的大小的模型,这种对输入属性的缩放很管用。比如在K近邻模型的距离测量和回归系数的准备。

接下来用都知道的鸢尾花数据集演示数据归一化:

# 对鸢尾花数据集进行数据归一化处理.
from sklearn.datasets import load_iris
from sklearn import preprocessing
# 加载数据
iris = load_iris()
print(iris.data.shape)
# 分离原始数据集,分为自变量和因变量
X = iris.data
y = iris.target
# 归一化处理
normalized_X = preprocessing.normalize(X)

更多关于归一化处理,详见API

方法2:数据标准化

数据标准化是指:将数据缩放,改变每个属性的分布,使其平均值为0,标准差为1。

诸如高斯过程等依赖于特征分布的模型,对特征进行标准化是非常有用的。

依然用鸢尾花的例子:

# 对鸢尾花数据集进行数据标准化处理.
from sklearn.datasets import load_iris
from sklearn import preprocessing
# 加载数据
iris = load_iris()
print(iris.data.shape)
# 分离原始数据集,分为自变量和因变量
X = iris.data
y = iris.target
# 标准化处理
standardized_X = preprocessing.scale(X)

更多关于归一化处理,详见API

二、说明

很难知道数据缩放是否会有利于模型的效果,大概率上是有用的,但不排除出现产生负效果。

中肯的建议是,先建立一个数据缩放后的副本,使用你的算法模型测试对比缩放前后的效果。

这可以让你快速知道,你的模型中缩放带来的好处或弊端。

你也可以试用不同的缩放方法,进行对比。

三、总结

数据缩放是一种非常重要的数据转换方法。

本文介绍了归一化和标准化两种方法,均用Python Scikit-Learn库提供的方法实现。简单好用,快试试吧!

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
sklearn中,可以使用`MultinomialNB`类实现贝叶斯分类。假设我们有一个包含多个文档的文本集合,每个文档都属于某个类别,我们可以使用贝叶斯分类算法来预测新文档所属的类别。 首先,我们需要将文本集合转化为特征向量。可以使用`CountVectorizer`类将文本转换为词袋模型表示,然后使用`TfidfTransformer`类将词袋模型表示转换为TF-IDF表示,即将每个单词的出现次数除以该单词在整个文本集合中出现的文档数。 接下来,我们可以使用`MultinomialNB`类来训练模型和进行预测。下面是一个示例代码: ```python from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.naive_bayes import MultinomialNB # 假设我们有一些文本和对应的标签 texts = ['this is a good book', 'this is a bad book', 'good movie', 'bad movie'] labels = ['positive', 'negative', 'positive', 'negative'] # 将文本转换为词袋模型表示 vectorizer = CountVectorizer() X = vectorizer.fit_transform(texts) # 将词袋模型表示转换为TF-IDF表示 transformer = TfidfTransformer() X = transformer.fit_transform(X) # 训练模型 clf = MultinomialNB().fit(X, labels) # 预测新文本的类别 new_text = 'this is a great movie' new_X = transformer.transform(vectorizer.transform([new_text])) predicted_label = clf.predict(new_X)[0] print(predicted_label) # 输出 positive ``` 在上面的代码中,我们首先使用`CountVectorizer`将文本转换为词袋模型表示,然后使用`TfidfTransformer`将词袋模型表示转换为TF-IDF表示。然后,我们使用`MultinomialNB`类来训练模型和进行预测。最后,我们使用训练好的模型来预测新文本的类别。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@Python大数据分析

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值