夏天一到,沿海地区经常会遭到台风的袭扰,可谓苦不堪言。
之前在公众号做过一个关于我国历史台风统计的可视化展示,发现很多有趣的数据,比如说台风登陆最多的城市是湛江。
大家可以去翻看历史文章,附有完整代码和数据,有兴趣做些可视化探索。
这次的文章不研究台风数据,而是尝试用Python来绘制台风路径。
主要第三方库
用到的主要工具包有pandas
、numpy
、matplotlib
、cartopy
、shapely
,前三个库大家可能都熟悉,下面介绍下后两个库的使用场景。
cartopy
:基于matplotlib的python地理数据处理和可视化库,本文会用来展示地图
shapely
: 是一个对几何对象进行操作和分析的Python库,本文用来处理点线数据
- cartopy文档:https://scitools.org.uk/cartopy/docs/latest/
- shapely文档:https://shapely.readthedocs.io/en/stable/
台风路径数据
本文用到的数据是我国2017年所有台风路径,包含了时间、经纬度、强度等关键信息。
由于数据来源网络,没法追溯真实性,仅供练习。
原始数据比较乱,我重新处理了方便使用:
可以看到共有7个字段:
台风编号:我国热带气旋编号
日期:具体时间
强度:0~9
纬度:单位0.1度
经度:单位0.1度
中心气压:hPa
中心最大风速:m/s
绘制地图
台风路径需要在地图上展示,那么如何获取地图呢?
方式有很多种,既可以用离线的GeoJson数据,也可以用JPG图片,或者第三方库提供的地图。
我这里用的是cartopy内置的地图数据,可以很方便的修改配置属性。
首先导入本次会用到的所有库:
# cartopy:用来获取地图
import cartopy.crs as ccrs
import cartopy.feature as cfeature
# matplotlib:用来绘制图表
import matplotlib.pyplot as plt
# shapely:用来处理点线数据
import shapely.geometry as sgeom
import warnings
import re
import numpy as np
import pandas as pd
warnings.filterwarnings('ignore')
plt.rcParams['font.sans-serif'] = [u'SimHei']
plt.rcParams['axes.unicode_minus'] = False
获取我国沿海区域地图:
# 通过cartopy获取底图
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(1, 1, 1, projection=ccrs.