10行Python代码实现令陶哲轩惊叹的数学公式!

最近陶神的一篇小论文引起了广泛关注,我们也来跟风吃个瓜。

为了代码实现,有必要先来解读一下数学公式。陶神的研究领域需要比较深的数学背景知识,一般人是很难看懂的。而这篇里的公式涉及的数学知识大家在本科时都已经学过了,所以只要稍作展开就能看懂哦。

论文里的证明比较简练,为了让更多的吃瓜群众看明白,本文按照陶神论文里的思路将证明作了详细展开。如果不想啃公式,那就直接跳到后面看代码吧。

理论部分

我们先看一下公式, 是一个  矩阵(简单点,可以只考虑元素是实数的情况,就是实对称矩阵), 表示它的第  个特征值(实数), 是它第  个特征向量, 就是  的第  个分量,以及由  删掉第  行和第  列得到的子矩阵 ( 阶主子式),那么有如下公式成立,

具体一点,举个例子看看。例如我们将  矩阵  分解为,

其中, 是实数, 是  维向量,以及  是  的  矩阵,则有,

当然这里假设分母不为零。

简单地说,就是由原矩阵的特征值以及它所有  阶主子式的特征值,可以计算出原矩阵的所有特征向量分量的模平方。

证明

下面我们根据论文 https://arxiv.org/pdf/1908.03795.pdf 来理一下陶神的证明思路。

引理 假设  矩阵  的一个特征值为 ,不失一般性,令 ,那么对于任意  行  列的矩阵 ,下式均成立,

其中  表示  的第  个特征向量, 表示由一个  行  列的矩阵  和一个有  个元素的列向量  组成的  行  列的新矩阵。

证明: 对  矩阵  作特征分解(对角化 ),得 ,其中  为对角矩阵

将分解代入等式右端,并令 ,得

其中  表示矩阵  的前  行和前  列构成的子矩阵, 和  亦同理。

由  得 ,将之代入等式左端得,

可见,左右两端相等,证毕 。

其实上面证明过程中很多中间步骤可以省略掉,但为了尽可能让更多人看明白,这里尽量保留了详细步骤。

定理 矩阵  的特征向量各元素的平方与  的特征值以及各个子矩阵  的特征值之间有如下关系,

不失一般性,我们设  和 ,即第  个特征向量的第  个元素。为了使用引理,让矩阵第  个特征值 ,因此让  减去 ,得 ,为了简化符号,变换后的新  仍然记作 ,此时 新  的特征值与原来  的特征值之间的关系刚好是 。因此现在有 ;当然  的其他特征值以及  的特征值也都作了相同偏差。关于  的特征值,我们可以来验证一下。将变换后的新  记为 , 即有

它的特征多项式为,

可见 。同样的,将变换后的新  仍然记为 。

回到前面,此时矩阵  满足引理的条件,且式  可简化为,

式  的右端就是 。

接下来使用引理来证明上面式  成立。我们先构造一个矩阵,

将  代入式 

得左端为,

易知右端为 ,所以式  的左端  也等于 ,因此式  得证 。

思维导图

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值