马上双十二,教你用Python实现秒杀系统!

本文通过Python+Redis+RabbitMQ构建秒杀系统,使用Flask编写后端。探讨了秒杀系统面临的高并发挑战,提出从前端到数据库的各层优化策略,包括前端按钮置灰、IP限制、限频、动静分离等。重点介绍了服务层的Redis计数器、订单队列、延迟队列和成交队列的实现,强调了消息队列异步处理和Redis的快速响应。提供GitHub项目链接供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

架构搭建是重点,代码或语言实现较简单。

本篇用python+redis+rabbitmq搭建一个秒杀系统。用flask编写后端,只包含秒杀相关程序,省略具体的业务接口。

项目会持续更新,完整代码见github:https://github.com/Sssmeb/seckilling

(如果觉得有帮助的话可以点个star~~~~ )

篇幅有限,不会介绍redis或rabbitmq的基本操作。如果没学过相关知识的只需先了解以下两点,也可以看懂本架构。

  1. redis是内存型数据库,读写速度远快于mysql这类磁盘型数据库,常用来作缓存。
  2. rabbitmq消息队列,可以理解为生产者消费者模型,用队列来存储任务,生产与消费解耦。

前言

 

在介绍架构之前,我们需要先知道秒杀系统面临的难点是什么。

首先在普通的系统中,最大的瓶颈是在于底层的数据库端。因为底层数据库(比如常见的mysql)是磁盘存储的,所以读写IO较慢,而且连接数有限。

而在秒杀业务场景,最大的特点是瞬时的高并发,即在短时间内会有大量的请求到来。如果让所有请求都打到底层数据库上,很大可能数据库会直接崩掉,即使数据库能承受住大量的连接请求,但大量的请求读写都会导致大量的锁冲突,导致响应速度大大减慢。而响应速度对于用户体验来说,无疑是十分重要的。

所以在这里,需要明确第一个目标:让尽可能少、尽可能有效的请求打到底层数据库

当我们回头再考虑这个业务场景,其实绝大部分的请求都不应该打到底层数据库。因为一般商品库存可能只有抢购用户数的百分之一,甚至更少。所以我们需要一些机制、策略,提前将无效的请求返回。

而站在整个网站设计的角度,第二个目标:越上层越容易实现,越有效。

这里的层指:

  1. 页面层
  2. 网络层
  3. 应用层
  4. 服务层
  5. 数据层

例如在前端页面层,如果不做处理,用户在点击抢购按钮以后,见网页没有响应,可能会再点击3-4次甚至更多,这样可能会导致最终有80%的请求都是重复无效的。但只需要前端在设计时,将点击后的按钮置灰,防止用户多次点击发送请求。即简单又有效。
以下简单指出各层可实施的策略:

  1. 页面层(简单的实现可以屏蔽 90%的请求)
  2. 按钮置灰,禁止用户重复提交
  3. 验证码
  4. 网络层
  5. 通过ip限制一定时间内的请求次数
  6. 应用层
  7. 一个页面最占用资源、带宽的是cs js 图片等静态资源
  8. 避免所有请
<think>好的,用户现在想了解消息中间件的定义及其作用。之前我回答了关于Redis作为缓存的应用场景,现在需要结合用户提供的引用内容来回答这个问题。首先,我需要回顾用户提供的引用资料,确保准确理解消息中间件的定义和作用。 根据引用[1],中间件是位于操作系统和应用程序之间的软件,可能被视为操作系统的一部分。特别强调了中间件需要包含通信中间件,并且主要用于分布式系统。引用[2]提到消息中间件的应用场景和技术选型,比如AMQP协议,以及不同中间件如RabbitMQ、Kafka等。引用[3]则说明了中间件的核心作用包括协议适配、功能解耦和性能优化。 用户的上一个问题关于Redis作为缓存,现在转向消息中间件,可能是在构建分布式系统时需要了解不同中间件的用途。我需要将消息中间件与之前提到的Redis缓存区分开来,同时结合用户提供的引用信息。 首先,定义消息中间件。根据引用[1]和[3],中间件必须包含通信组件,且在分布式系统中使用。所以消息中间件的定义应该是专注于消息传递的中间件,帮助不同系统或组件之间进行可靠的数据传输。 然后,作用方面,引用[3]提到的协议适配、功能解耦和性能优化是关键点。需要详细说明这些方面,比如如何通过消息队列实现解耦,协议适配如何屏蔽底层差异,以及性能优化如何提升吞吐量。 另外,用户可能想知道具体的应用场景,比如在哪些情况下会使用消息中间件,比如异步处理、削峰填谷等,这些在之前的Redis回答中也有类似的应用,但消息中间件更多关注于消息传递而非缓存。 需要确保回答结构清晰,分点列出定义和作用,可能加入示例帮助理解。同时,检查引用标注是否正确,引用[1]、[2]、[3]的内容需要对应到相应的位置。 最后,生成相关问题,确保问题与主题相关,比如消息中间件的选型、协议比较等。</think>### 消息中间件的定义与核心作用 --- #### **一、消息中间件的定义** 消息中间件(Message-Oriented Middleware, MOM)是**分布式系统**中实现组件间异步通信的核心基础设施。它基于**生产者-消费者模型**,提供可靠的消息传递机制,确保不同服务、应用或设备之间数据的标准化交互[^1]。其核心特征包括: - **协议无关性**:支持多种通信协议(如 AMQP、MQTT、STOMP),屏蔽底层网络差异[^3]。 - **平台解耦**:允许 Java、Python、C++ 等不同语言编写的系统互通。 - **持久化保障**:通过磁盘存储或复制机制防止消息丢失。 **示例定义公式**: $$ \text{消息中间件} = \text{通信协议标准化} + \text{消息路由} + \text{异步传输保障} $$ --- #### **、消息中间件的核心作用** 1. **系统解耦** - **场景**:订单系统与库存系统、支付系统的交互。 - **实现**:订单生成后,通过消息队列(如 Kafka Topic)通知下游系统,避免直接 API 调用依赖[^2]。 - **优势**:系统升级或故障时不影响其他模块,提升整体容错性[^3]。 2. **异步通信** - **场景**:用户注册后异步发送邮件/短信。 - **实现**:注册服务将消息写入 RabbitMQ,由独立的消息处理服务消费。 - **性能提升**:主流程响应时间从 500ms(同步)降至 50ms(异步)[^3]。 3. **流量削峰** - **场景**:电商秒杀活动中的瞬时高并发请求。 - **实现**:使用 RocketMQ 堆积请求,按服务处理能力匀速消费。 - **数据**:单队列可承载 10万+/秒的写入吞吐量,避免数据库崩溃[^2]。 4. **数据最终一致性** - **场景**:跨微服务的分布式事务(如银行转账)。 - **实现**:通过事务消息(如 Kafka Exactly-Once 语义)确保扣款与入账操作的原子性[^2]。 5. **协议转换与适配** - **场景**:物联网设备(使用 MQTT)与云端服务(HTTP/REST)的通信。 - **实现**:EMQ X 中间件自动转换协议格式,统一处理数据流[^3]。 --- #### **三、技术实现对比** | 特性 | RabbitMQ (AMQP) | Kafka (TCP) | RocketMQ (TCP) | |--------------------|--------------------------|-------------------------|-------------------------| | **吞吐量** | 万级 QPS | 百万级 QPS | 十万级 QPS | | **延迟** | 微秒级 | 毫秒级 | 毫秒级 | | **典型场景** | 金融交易、企业应用 | 日志处理、实时流 | 电商订单、事务消息 | | **持久化机制** | 内存+磁盘镜像队列 | 分区日志顺序写入 | 基于 Commit Log 存储 | --- #### **四、典型应用案例** 1. **物流轨迹更新** - 运输节点通过 MQTT 协议上报 GPS 数据至 ActiveMQ,Web 服务订阅消息更新地图展示。 - **技术选型依据**:需支持低功耗设备协议与 WebSocket 双向通信[^2]。 2. **金融对账系统** - 使用 Kafka 流式处理支付流水与银行回调记录,通过窗口函数实现实时对账。 - **数据指标**:日均处理 10 亿条消息,端到端延迟 < 1 秒[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值