Python-量化投资(二)

本文介绍了使用Python进行量化投资,详细探讨了Markowitz均值-方差模型,如何绘制最小方差前缘曲线,并引入Black-Litterman模型以增强资产配置的稳定性。通过Python实现,展示了如何处理股票相关性,计算最优资产比例,并进行训练集与测试集的划分验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

投资组合的收益与风险

投资组合的收益率为Rp为:
在这里插入图片描述

import numpy as np
import math
import matplotlib.pyplot as plt
def cal_mean(frac):
    return(0.08*frac+0.15*(1-frac))

mean=list(map(cal_mean,[x/50 for x in range(51)]))
sd_mat=np.array([list(map(lambda x: math.sqrt((x**2)*0.12**2+
((1-x)**2)*0.25**2+2*x*(1-x)*(-1.5+i*0.5)*0.12*0.25),[x/50 for x in range(51)])
) for i in range(1,6)])
#[expression for variable in sequence] list comprehension
plt.plot(sd_mat[0,:],mean,label='-1')
plt.plot(sd_mat[1,:],mean,label='-0.5')
plt.plot(sd_mat[2,:],mean,label='0')
plt.plot(sd_mat[3,:],mean,label='0.5')
plt.plot(sd_mat[4,:],mean,label='1')
plt.legend(loc='upper left')

在这里插入图片描述

Markowitz均值-方差模型

利用Markowitz模型进行数量化的资产配置,用Python实现

股票代码 股票名称
600004 白云机场
600015 华夏银行
600023 浙能电力
600033 福建高速
600183 生益科技
import pandas as pd
stock=pd.read_table('stock.txt',sep='\t',index_col='Trddt')
stock.index=pd.to_datetime(stock.index)
fjgs = stock.loc[stock.Stkcd==600033,"Dretwd"]
fjgs.name="fjgs"
zndl=stock.loc[stock.Stkcd==600023,'Dretwd']
zndl.name
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值