你真的需要创建类吗?
Python中一切都是对象,所以面向对象是Python的重中之重。
但我们不一定需要创建自己的对象,有时候直接使用Python内置的列表,字典等就够了。
就算是需要创建类,也有一些不同的选择。先来看看这个例子:
class InventoryItem:
'''本类用于记录仓库中的一件物品.'''
name: str
unit_price: float
quantity_on_hand: int = 0
def __init__(
self,
name: str,
unit_price: float,
quantity_on_hand: int = 0
) -> None:
self.name = name
self.unit_price = unit_price
self.quantity_on_hand = quantity_on_hand
def total_cost(self) -> float:
return self.unit_price * self.quantity_on_hand
inv = InventoryItem('大叔的书', 38.8, 10)
inv2 = InventoryItem('大叔的书', 38.8, 10)
print(inv)
print(inv == inv2)
打印结果:
<__main__.InventoryItem object at 0x105413e20>
False
这是一个普通的类,有三个属性保存库存的基本信息,还有一个方法计算总成本。
当我直接打印它的时候,结果是很不理想的。因为默认情况下只会打印类名和对象的内存地址。
当我们尝试比较两个类的时候,它基本上无脑返回False,因为默认比较的是地址。
普通青年的实现
为了实现有意义的打印和比较,我们需要添加相应的魔术方法:
class InventoryItem:
'''本类用于记录仓库中的一件物品.'''
name: str
unit_price: float
quantity_on_hand: int = 0
def __init__(
self,
name: str,
unit_price: float,
quantity_on_hand: int = 0
) -> None:
self.name = name
self.unit_price = unit_price
self.quantity_on_hand = quantity_on_hand
def total_cost(self) -> float:
return self.unit_price * self.quantity_on_hand
def __repr__(self) -> str:
return (
'InventoryItem('
f'name={self.name!r}, unit_price={self.unit_price!r}, '
f'quantity_on_hand={self.quantity_on_hand!r})')
def __hash__(self) -> int:
return hash((self.name, self.unit_price, self.quantity_on_hand))
def __eq__(self, other) -> bool:
if not isinstance(other, InventoryItem):
return NotImplemented
return (
(self.name, self.unit_price, self.quantity_on_hand) ==
(other.name, other.unit_price, other.quantity_on_hand))
inv = InventoryItem('大叔的书', 38.8, 10)
inv2 = InventoryItem('大叔的书', 38.8, 10)
print(inv)
print(inv == inv2)
现在好了,打印和比较都符合我们的预期:
InventoryItem(name='大叔的书', unit_price=38.8, quantity_on_hand=10)
True
我们添加了三个方法:
- __repr__是print语句会默认调用的魔术方法
- __eq__用于比较对象
- __hash__用于计算哈希值,如果对象需要存放到哈希相关的数据结构中时,必须实现这个方法。在上面的例子中是不需要的。
好是好了,是不是挺繁琐的?如果为了实现对象之间的比较,还需要添加__lt__,__gt__等更多魔术方法。
真的很繁琐!现在请上今天的主角 - dataclass。
文艺青年的实现,用dataclass
为了解决这个问题,Python引入了dataclass模块,直接上代码,上面的代码可以被简化成这样:
from dataclasses import dataclass
@dataclass(unsafe_hash=True)
class InventoryItem2:
'''本类用于记录仓库中的一件物品.'''
name: str
unit_price: float
quantity_on_hand: int = 0
def total_cost(self) -> float:
return self.unit_price * self.quantity_on_hand
inv3 = InventoryItem2('大叔的书', 8.8, 10)
inv4 = InventoryItem2('大叔的书', 8.8, 10)
print(inv3)
print(inv3 == inv4)
输出结果也很理想:
InventoryItem2(name='大叔的书', unit_price=8.8, quantity_on_hand=10)
True
而且它比上面的更强大,lt,__gt__等魔术方法也都帮我们实现了,可以直接把常见的运算符直接用在对象上。
@dataclass是一个类装饰器,它包装了我们自己定义的类,帮我们实现了以上所需要的各种魔术方法。
什么时候用dataclass?
顾名思义:dataclass就是「数据对象」。如果一个类,它的主要作用就是存放数据,本身不包括很多业务逻辑。那么就可以使用dataclass,大大简化代码量。
所以大叔认为,写Python的时候要考虑三个等级:
- 第一个等级不需要用类,直接使用list, dict这些,写个方法就搞定了。
- 第二个等级,如果为了更直观的表达和存储数据,可以用dataclass。
- 第三个等级,要表达的事物既有状态,又有很多行为,那就用普通的类。
关于Python技术储备
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
Python资料、技术、课程、解答、咨询也可以直接点击下面名片,
添加官方客服斯琪
↓