AI【简历评估】智能体:一个找“工作“的工作流

小伙伴,你很幸运!只要你能看完本期,你就解锁一个技术含金量很高的工作流。

现阶段大环境依然不好,不仅仅是很多的刚刚毕业的学生或者刚刚被毕业的你我他,都面临着找工作等问题。

没有经验的你,亦或者经验不足的他,很多时候写了很大篇幅的简历,又无人帮助进行修改,这是一个很糟糕的事情。

img

现如今,大模型横行的时代,有这么一款智能体能让尴尬的你解决无人辅助和修改自己简历问题,变得不在尴尬。

img

一、工作流

img这个工作流的设计逻辑是:首先通过“是否进行简历分析评估”意图识别节点判断用户是否需要进行简历分析评估,若确认则进入“是否上传文件”选择器,若上传文件则进入“文件类型分析”意图识别节点,根据文件类型分别调用“docx_reader”和“PDF_reader”读取文件内容;

若未上传文件则进入“是否填写内容”选择器,若填写内容则直接将内容传递到后续节点。之后通过“简历信息合并”节点将文件内容或填写内容进行合并整理,再传递给“简历评估智能体”节点对简历进行详细评估,并输出评估结果。

同时,若有岗位信息则会通过“是否有岗位信息”选择器进入“岗位评估智能体”节点,对简历与岗位的匹配度进行分析并输出结果;若无岗位信息则直接输出简历评估结果。

二、工作流拆解

这个工作流的核心逻辑是通过一系列自动化节点,只需输入自己的简历,就可以生成简历评估。以下是其核心逻辑的总结:

(1)输入及意图识别节点

img

  • 是否进行简历分析评估(意图识别)

识别用户是否意图进行简历分析评估,若用户表达出相关意图,则触发后续流程。

img

  • 文件类型分析(意图识别) 对用户上传的文件进行类型分析,判断是doc文件还是pdf文件等,以便后续进行针对性的文件处理。

img

(2)文件处理节点

  • docx_reader

用于读取docx格式的文件,将docx格式文档解析成文本内容,以便后续处理。

img

  • PDF_reader 将在线PDF格式解析成文本,方便后续对PDF文件中的内容进行分析和处理。

img

(3)文本处理及信息整合节点

将多个字符串类型的变量(如docx_reader、PDF_reader输出的内容以及用户直接输入的简历文本内容等)进行合并,形成完整的简历信息文本,为后续的简历评估等操作提供输入。

img

(4)评估及输出节点

  • 简历评估智能体(大模型)

调用大语言模型,根据输入的简历信息,从多个专业维度进行全面评估,包括给出简历的分数、指出优势和缺陷以及提出优化意见等。

img

  • 岗位评估智能体(大模型)

img

结合简历信息、简历评估结果以及用户输入的意向岗位信息,进行岗位匹配度分析,并提供针对性的简历优化建议、个人能力提升方向以及面试注意事项等。

三、核心工作流节点关系

img

这个工作流从用户是否进行简历分析评估开始,如果用户有此意图,则判断是否上传文件;

若上传文件,则进一步识别文件类型(doc或pdf),分别通过docx_reader或PDF_reader进行解析,之后判断是否填写内容,若填写则将文件解析内容与用户输入内容合并后送入简历评估智能体生成评估结果,接着判断是否有岗位信息,若有则通过岗位评估智能体输出岗位评估结果,若无则直接输出简历评估结果;

如果用户未上传文件,则直接判断是否填写内容,若填写则同样进行简历评估,若未填写则输出未填写内容提示;若用户初始无简历分析评估意图,则直接输出未识别意图提示,整个流程最终结束。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### AI智能体工作流设计与实现 #### 基本概念和设计原则 AI智能体工作流是指通过一系列预定义的任务处理流程来自动化完成特定目标的过程。这种工作流不仅能够提高效率,还能增强决策的质量和速度。为了构建有效的AI智能体工作流,需遵循几个核心的设计原则: - **模块化**:将复杂任务分解成多个独立的小型组件,以便于管理和优化。 - **灵活性**:允许动态调整参数或路径以适应不同的环境变化。 - **可扩展性**:支持随着需求增长而轻松增加新功能的能力。 #### 工作流的具体组成部分 一个典型的AI智能体工作流通常包括以下几个主要部分[^1]: - **感知层**:负责收集外部数据输入,如图像识别、语音解析等。 - **理解层**:基于大语言模型(LLM),此阶段涉及对原始信息的理解以及上下文关联分析,从而形成有意义的知识表示形式[^3]。 - **规划层**:根据当前状态评估可能采取的动作序列,并选择最优方案;这一步骤依赖于强大的推理引擎来进行预测性和策略性的思考。 - **行动层**:执行选定的操作指令集,无论是物理动作还是软件交互行为。 - **反馈机制**:持续监控操作效果并向其他层次提供更新信息用于改进后续表现。 #### 实现技术栈 要成功部署这样的系统,开发者可以考虑采用以下技术和框架组合[^2]: - 使用Python作为编程语言,因为它拥有丰富的机器学习库生态体系; - TensorFlow或者PyTorch这类深度学习平台可以帮助训练高质量的语言理解和视觉认知模型; - Flask/Django RESTful API服务端架构便于与其他应用程序集成; - Redis/Memcached缓存数据库加速中间件通信过程中的临时存储需求; - Docker容器化解决方案简化跨平台迁移难题的同时也提高了资源利用率。 ```python import tensorflow as tf from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): data = request.get_json() model_input = prepare_data(data['input']) # 自定义函数准备输入数据 predictions = trained_model.predict(model_input) # 调用已训练好的模型进行预测 return jsonify({'prediction': str(predictions)}) if __name__ == '__main__': app.run(debug=True) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值