近日发表在Nature Medicine的文章《Integrated image-based deep learning and language models for primary diabetes care》针对糖尿病护理和视网膜病变筛查问题,结合类ChatGPT的语言大模型和基于眼底影像的图像模型提出一种综合性解决方案DeepDR-LLM。本文将对该方案进行解读,希望能够为各位读者的研究提供思路。
引言
糖尿病在全球范围内影响着超过5亿人,其中80%生活在中低收入国家。视网膜病变是糖尿病患者中最常见的并发症,影响着30%到40%的糖尿病患者,是劳动年龄段成人失明的主要原因,定期进行视网膜病变筛查是糖尿病护理的重要组成部分。由于中低收入国家基础设施和人力资源的不足,视网膜病变筛查往往被忽视,这导致了严重的健康后果和广泛的社会经济影响。
近年来出现了多种新技术用于解决糖尿病护理面临的困境,包括远程医疗、基于人工智能的血糖监测、基于视网膜图像的深度学习模型以及低成本便携式视网膜相机。然而,这些方案通常只专注于某一方面的改进,无法全面整合糖尿病护理的需求。此外,这些技术依赖于训练有素的基层医生,而在资源匮乏的地区合格的基层医生数量无疑是远远满足不了需求的。近期语言大模型的迅速发展为解决上述问题带来了新的希望。语言大模型具备自然语言理解和生成能力,能够优化患者监测、个性化治疗方案,进而改善糖尿病和视网膜疾病患者的健康状况。本文介绍的这篇论文结合语言大模型的进展和影像方面人工智能技术的积累,针对糖尿病护理工作提出一种综合性解决方案DeepDR-LLM。
DeepDR-LLM
DeepDR-LLM由语言大模型模块和DeepDR-Transformer和两个模块组成,语言大模型模块基于开源的LLAMA模型(LLAMA和ChatGPT类似,可以视作开源版本的ChatGPT)进行微调,为糖尿病患者提供个性化的护理建议。DeepDR-Transformer基于Vision Transformer架构实现,对眼底图像进行病变分割和病变分级。
语言大模型模块旨在根据病史、体检、实验室检查以及病变分级等各种临床数据制定糖尿病护理建议。语言大模型模块基于Meta开发的语言大模型LLAMA,类似于ChatGPT,LLaMA能够处理文本生成、翻译、问答和总结等多种任务,并在多个基准测试中表现出色。由于缺乏特定领域的专业知识,直接将LLAMA用于生成糖尿病护理建议这一任务并不能取得较好的效果。该研究利用上海第六人民医院和华东疗养院267730名参与者的数据,通过LoRA对LLaMA-7B进行微调,使语言大模型具备较佳的糖尿病护理建议生成能力。
DeepDR-Transformer模块旨在分析眼底图像以预测糖尿病视网膜病变。DeepDR-Transformer基于Vision Transformer架构,由ImageNet的预训练权重初始化,并在该研究团队收集整理的数据集上训练。DeepDR-Transformer包含四个不同的模型分别用于完成图像质量评估(是否可读)、视网膜病变分级、黄斑水肿分类(有、无)以及病变分割(微动脉瘤、出血、棉絮斑和硬性渗出物)。
通过将DeepDR-Transformer模块生成的结果按照固定的模板,例如“视网膜病变等级:0(无DR);黄斑水肿等级:0(无DME)”,即可和其它临床数据一起作为提示词输入语言大模型模块,进而生成糖尿病护理建议。
效果分析
该研究通过回顾性实验和前瞻性研究对语言大模型模块、DeepDR-Transformer以及DeepDR-LLM进行评估分析。
语言大模型模块的评估基于三个方面:不适当内容的程度、缺失内容的程度和可能的伤害风险。结果显示,在英语上下文条件下,71%的DeepDR-LLM建议被认为是适当的,高于LLaMA(51%),与基层医生(71%)相当;36%的DeepDR-LLM建议没有缺失内容,高于基层医生(27%);57%的DeepDR-LLM建议被评为“低可能性”伤害风险,与基层医生(55%)相当。在中文上下文条件下,77%的DeepDR-LLM建议没有不适当内容,高于LLaMA(66%)和基层医生(54%)。此外,63%的DeepDR-LLM建议没有缺失内容,高于基层医生(46%)。88%的DeepDR-LLM建议被评为“低可能性”伤害风险,而基层医生为60%。
DeepDR-Transformer模块在14个标准眼底影像数据集和7个便携式眼底影像数据集中进行了评估。评估结果显示,该模型在检测视网膜病变方面表现出色。对标准眼底影像而言,在12个外部测试集中模型的AUC值的取值范围为0.892到0.933。对便携式眼底影像而言,在6个外部测试集中模型的AUC值取值范围为0.896到0.920。
DeepDR-LLM通过一个前瞻性研究进行评估。评估结果显示,基层医生+DeepDR-LLM的建议在质量和同理心方面均优于单独的基层医生或DeepDR-LLM,且基层医生对DeepDR-LLM系统的理解性、节省时间、有效性和安全性评价较高。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。