MMSearch: 新坑来了!多模态大模型也可以作为搜索引擎了?

文章链接:

https://arxiv.org/pdf/2409.12959

代码链接:

https://github.com/CaraJ7/MMSearch

项目主页:

https://mmsearch.github.io/

数据集链接:

https://huggingface.co/datasets/CaraJ/MMSearch

背景

随着大型语言模型 (LLMs) 的出现,人工智能搜索引擎(如 SearchGPT)展示了人类与互联网交互的新范式。然而,当前大多数 AI 搜索引擎仅限于文本设置,忽视了用户查询的多模态性质和网站信息的文本-图像交错特性。虽然大型多模态模型 (LMMs) 最近取得了令人印象深刻的进展,但它们是否能作为 AI 搜索引擎发挥作用仍未得到充分探索。

为了填补这一研究空白,研究团队提出了 MMSEARCH-ENGINE 框架和 MMSEARCH 测试集,并进行了广泛的评估:

1. MMSEARCH-ENGINE 旨在赋予任何 LMMs 多模态搜索能力。它不仅支持包含图像的查询,还同时输入文本和视觉的网页信息,确保全面理解网页内容。该框架的工作流程包括问题重构、网页排序和答案总结三个关键步骤,充分利用了 LMMs 的多模态信息理解能力;

2. MMSEARCH 测试集是首个专门评估 LMMs 多模态搜索能力的综合性测试集。它包含 300 个精心收集的问题,涵盖 14 个子领域,内容分为新闻和知识两大类。新闻类别聚焦于数据收集时(2024 年 8 月)的最新信息,而知识类别则收集了需要罕见知识才能回答的查询。这种设计确保了测试内容与现有 LMMs 的训练数据不重叠,从而保证了评估的挑战性和有效性;

3. 研究团队对多个闭源和开源 LMMs 进行了广泛的实验和评估。结果显示,GPT-4o 在各项任务中表现最为出色。值得注意的是,配备了 MMSEARCH-ENGINE 的 SoTA LMMs 在端到端任务中甚至超越了知名的商业产品 Perplexity Pro。

然而,我们详尽的错误分析也揭示了当前 LMMs 在多模态搜索特定任务上的不足,特别是在问题重构和网页排序方面的能力限制了它们正确识别有用网站和提取相关答案的能力。

最后,由于多模态搜索本身是一个复杂的任务,我们进行了一个消融实验,在端到端多模态搜索任务上验证了最近由 OpenAI o1 提出的发现:相比于增大模型结构,推理时的额外计算有更好的性能。

关键设计与数据组成

2.1 MMSearch-Engine框架

MMSEARCH-ENGINE 包含三个关键阶段:问题重构、网页排序和答案总结。

a) 在问题重构阶段,LMM 需要理解用户的原始查询(可能包含对图像的引用),并将其转化为适合传统搜索引擎的文本查询。为了增强视觉理解能力,使得 LMM 能充分捕捉到输入的图片中的关键背景信息和人物,系统还集成了 Google Lens 的图像搜索结果。

b) 在网页排序阶段,系统从搜索引擎 API(如 DuckDuckGo)获取前 K 个相关网站,然后让 LMM 从中选择最具信息量的网站。为了克服 LMM 的上下文长度限制,系统只提供每个网站的关键信息,包括标题、摘要和网页顶部的截图。

c) 在答案总结阶段,系统对选定的网站进行全面爬取,获取原始文本内容和完整页面截图。为了提高效率,系统会对截图进行裁剪,并使用文本嵌入模型从原始内容中检索出与查询最相关的部分(最多 2K 个输入 Token)。最后,LMM 基于这些信息生成答案摘要。

2.2 MMSearch测试集

MMSearch 测试集提供了一个全面的多模态搜索能力评估基准。测试集涵盖了广泛的新闻话题和专业知识领域,以模拟各种用户搜索场景。

测试集中的数据被分为两个领域——新闻和知识:

  • 新闻领域包含从 2024 年 5 月到 2024 年 8 月的最新信息,确保与现有 LMM 的训练数据不重叠,这部分作为基准的动态部分。

  • 知识领域则聚焦于特定领域的罕见知识,超出了现有顶级语言模型(如 GPT-4 或 Claude 3.5 Sonnet)的能力范围,构成基准的静态部分。我们的测试集总共收集了 300 个查询,分布在 14 个子领域中。

我们的数据收集过程模拟了实际搜索流程。标注者首先提出问题并提供答案,然后给出重构的问题,这个重构的问题用来提交给搜索引擎的 API。标注者对搜索结果进行分类,分为有效、不确定和无效三类,并确保至少有一个有效网站。

接着,我们从有效网站中随机选择一个获取完整内容,包括全屏的截图和全部的内容。为了保证问题可以被正确回答,另一名标注者需要验证问题的可回答性,从而确保数据质量。

2.3 评估标准

评估任务包括四个部分:问题重构、网页排序、答案总结和端到端任务。前三个任务评估 LMM 在搜索框架中各个阶段的能力,而端到端任务则模拟真实世界的完整搜索场景,依次执行所有三个阶段。


这个基准测试的设计旨在全面评估 LMM 在多模态搜索中的各项能力,从查询生成到结果分析的整个过程都被纳入考量。通过这种方法,可以深入了解 LMM 在处理复杂、多样化搜索任务时的表现,为进一步改进和优化多模态搜索技术提供有价值的见解。

2.4 数据集更新

为确保评估的公平性和时效性,MMSEARCH 的新闻领域问题时间跨度从 2024 年 5 月 1 日到 8 月 31 日,确保所有测试数据都超出了现有 LMM 的知识截止日期。随着新模型的发布,数据集会进行动态更新,以维持评估的有效性。

实验与结论

我们在 MMSearch benchmark 上测评了 11 个现有的 LMM,并且对于开源模型,测试了低分辨率以及高分辨率的输入,如下表所示。其中 AnyRes 表示使用模型提供的高分辨率技术,而 LowRes 则表示将图片 resize 到和模型的 vision encoder 规定的大小。

基于测评,我们得到了如下的发现与结论:

1. 高分辨率的输入并没有为大部分的 LMM 带来明显的性能增益。这一发现与常见的测试集的测试结果是不一致的,说明对于内容的感知并不是当前 LMM 做不好多模态搜索任务的瓶颈,而是由于在某些其他与搜索相关的能力上有明显的欠缺,比如问题重构与抽取有用的信息。

2. LMM 在问题重构与网页排序能力上有明显的欠缺。LMM 在端到端任务与答案总结任务的性能上有显著的差异,这其实揭示了它们在问题重构和网页排序能力上的普遍不足。根据结果发现,所有模型的摘要任务得分都明显高于端到端任务得分,其中开源模型的差距尤为明显。这种差异主要源于端到端任务对模型前两轮处理能力的依赖。

3. 闭源与开源 LMM 模型仍有显著的性能差距。研究表明,闭源 LMM 在各项指标上普遍优于开源模型。其中,GPT-4o 以 62.3% 的最高总分展现出卓越的零样本多模态搜索能力。虽然 Qwen2-VL-72B 在开源模型中表现最佳,但仍落后 GPT-4o 9.6 个百分点。在最具挑战性的端到端任务中,这一差距进一步扩大到11.3%,对于 7B 级开源 LMM,差距甚至达到 20.1%。

4. MMSearch-Engine 在端到端任务中超越了商业 AI 搜索引擎 Perplexity Pro。尽管 Perplexity Pro 使用了如 GPT-4 和 Claude 3.5 Sonnet 等先进的大型语言模型,但在相同模型的配置下,其性能仍然明显落后于 MMSEARCH-ENGINE。

更为显著的是,MMSEARCH-ENGINE 甚至在使用开源的 Qwen2-VL-72B 模型时也能超越 Perplexity Pro。这一发现突显了 MMSEARCH-ENGINE 作为开源多模态 AI 搜索引擎方案的潜力。研究者发现 Perplexity 表现不佳的原因可能在于其仅使用了基础的图像搜索算法,导致无法准确识别图像中的关键对象并检索相关信息。

最后,利用我们的端到端的多模态搜索的任务,我们进行了初步的扩展测试时的计算和扩大模型规模的比较的研究。实验使用了 LLaVA-OneVision-7B 模型来测试扩展测试时计算的效果,并与扩展模型规模的 LLaVA-OneVision-72B 进行对比。研究采用了类似于"best-of-N"的多模态搜索策略,其中 N 设为 25。具体步骤请见原论文。

结果显示,通过扩展测试时计算,LLaVA-OneVision-7B 的端到端任务得分从 29.6% 显著提升至 55.2%,超过了 LLaVA-OneVision-72B 的 44.9% 和 GPT-4V 的 52.1%。这一发现凸显了扩展测试时计算的巨大潜力,验证了 OpenAI o1 引入的这一技术的有效性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值