提升您的AI交互能力。学习如何编写精确有效的提示词,以从AI系统中获得预期结果。深入探讨提示词工程的原则,清晰地向AI传达您的意图,并探索优化AI响应的高级技巧。
| 1 提示的艺术
生成式AI能够理解和书写人类使用的自然语言。提示词使我们能够与AI进行沟通。
在小节中,您将学习如何与生成式AI助手进行交流,并为其分配不同任务的指令。
For example:
写一个关于魔法冒险的短篇故事
ChatGPT 4o:
人类可以使用提示词从生成式AI处获得响应,如上图
GenAI 需要一些输入才能生成输出。事实上您编写提示的方式会影响 GenAI 将生成的内容。例如
-
给我的经理写一封电子邮件请求休假
-
写一封电子邮件
如果有这两个你会选择哪一个呢?
给我的经理写一封电子邮件请求休假
写一封电子邮件
知道为什么会发生这种情况吗?你能想到这样做有什么优点或缺点吗?在评论中与其他学习者分享您的想法。
值得一提的是,与搜索引擎不同,生成式人工智能助手会记住你所谈论的内容。如果你第一次没有得到想要的答案,你可以添加更多细节或换一种方式提问。
尝试添加更多提示以获得更具体的答案。
对话型人工智能助手如 ChatGPT 和 Gemini 专注于与人类进行双向互动。
这是可能的,因为对话型人工智能可以理解和回应人类的自然语言
一个不太好的提示词是什么样子的呢
“告诉我所有的事情。”
这个提示太宽泛和模糊,无法提供明确的方向或细节。它可能会导致生成的回答不相关或过于笼统,因为没有指定具体的主题或问题。
另一个例子是:
“给我一个有趣的故事。”
虽然这看起来是一个合理的请求,但如果没有进一步的细节,比如希望故事的类型、风格或主题,生成的故事可能不会符合用户的期望。
所以,提供更多细节可以显著提高响应的质量。
生成式人工智能(GenAI)会尽力遵循你的指示。尽管这种灵活性使它能够展现创造力,但也可能导致生成错误的信息,这被称为幻觉(hallucinations)。我们将在后续的内容中探讨这一问题。
| 2 提示词设计
提示是我们与生成式人工智能互动的主要方式,而创建有效的提示是发挥人工智能全部潜力的关键。
在本小节中,你将学习提示设计——一种巧妙编写提示以获得所需回应的艺术。
你编写提示的方式会影响响应的质量。你可以使用图示中的构建块来确保你的提示既详细又具体。
提示中最重要的内容是什么?很明显是任务了
任务是你希望大型语言模型(LLM)执行的操作。新手通常会忘记包含足够的上下文(背景细节和其他相关信息)您提供的背景和详细信息越多,响应就越准确。
生成一幅未来城市黄昏时分的图像。
生成一幅未来城市黄昏时分的图像,展示霓虹灯、高架铁路和飞行汽车。
给人工智能分配一个角色也有助于获得更准确和相关的回应。你可以在提示中包括角色(例如:法语教师、程序员、讲故事者)
另一种帮助模型理解任务并给出更相关答案的方法是在提示中添加示例。
为智能手表创建产品描述。其主要功能包括:心率监测、睡眠跟踪和可定制的表盘。描述应遵循本示例的格式和风格:“通过我们的便携式蓝牙音箱,体验终极的聆听体验。防水耐用,提供12小时的不间断音乐,并有多种鲜艳的颜色可供选择。”
您可以要求模型以特定格式组织其响应(例如要点列表、电影剧本、代码等),看看吧!
将旅行计划中的信息结构化为目的地列表,并使用斜杠分隔的日期格式(DD/MM/YYYY):
旅行计划:今夏开启“欧洲首都之旅”!我们将于2024年7月1日从巴黎出发,7月5日前往柏林,7月9日前往罗马,7月13日到达马德里,并于2024年7月16日结束旅程。
您可以使用 Markdown 语言来指定输出的格式。
你选择的格式取决于你将如何使用输出内容。
例如,项目符号和表格使信息对人类更容易阅读,而计算机则可以处理代码和数据。
- 项目文档
- CSV文件
- Markdown文件
值得一提的是,并非所有提示都需要全部 4 个元素。这取决于任务以及您希望得到的答复的具体程度。
提示是一个对话式的、迭代的过程。这意味着你可以使用多个提示不断添加新信息,直到获得你想要的结果。
您从尝试不同的提示中学到了什么?在评论中分享吧!
通过与生成式人工智能(GenAI)互动,人类可以帮助提高其输出的质量、准确性和相关性。这被称为‘人类在环’(human-in-the-loop)。
| 3 提示工程技术1
之前,你学习了提示设计,如何创建和结构化提示。
在本小节中,你将开始学习提示工程技术,以进一步优化提示并改进结果。
生成式人工智能(GenAI)能够执行它未被专门训练的任务。
将以下文本分类为中性、负面或正面:‘这部电影还好’。
尽管大型语言模型(LLMs)没有专门为文本分类训练,但它们在这方面表现出色。
零样本(One-shot prompt)提示是一个包含任务但没有示例的提示。
在前面,我们使用了一个零样本提示。让我们再试一个。
建议将以下反馈发送给哪个部门:‘这款音响在我购买后一周就停止工作了’。
您可以指示 GenAI 执行训练期间未曾见过的任务。在零样本提示,GenAI 依赖于模型的无需预训练进一步执行即可完成任务微调。
零样本提示不包含所需输出的示例。让我们看看另一个任务如何通过零样本方式完成。
“将以下客户消息分类为以下类别之一:‘反馈’、‘信息请求’、‘其他’
需要分类的消息:
“我只是想对周五的结账团队表示最诚挚的感谢,因为他们在我因受伤而挣扎时帮我把杂货搬到车上。”
“我喜欢你的商店,我想加入你的销售团队。”
“你能确认一下狗床的尺寸吗?我正在考虑购买,但想确保它们能适合我的客厅。”
大型语言模型(LLMs)可以将预训练过程中获得的知识和技能转移到不同应用中的特定任务。
更复杂的任务可能需要一个包含示例输出的提示。尝试使用少量示例的提示。
“根据以下示例,将以下消息发送到哪个部门:
示例1:‘我对我的账单有疑问。费用上有不一致的地方。’
部门:账单
示例2:‘我的产品无法正常工作。我需要故障排除帮助。’
部门:技术支持
示例3:‘我想退还上周购买的商品。它不符合我的期望,所以我希望能获得退款。’ 部门:退货与退款
消息:‘我订购了裤子,但它们太长了,你们有修改服务吗?’”
少量示例提示(few-shot prompt)包含至少一个所需输出的示例。这些示例帮助模型满足你的期望。少量示例提示(few-shot prompt)通过提供示例来指导预训练模型完成任务,从而在无需进行微调的情况下获得更好的结果。
| 4 提示工程技术2
链式思维(Chain-of-Thought)是一种提示工程技术,有助于生成式人工智能(GenAI)处理复杂问题。
在本小节中,你将使用链式思维提示,引导生成式人工智能在执行任务时分享其逐步推理过程。
一种在生成式人工智能(GenAI)中效果显著的策略是将复杂问题分解为更小、更易管理的步骤。
当任务涉及逻辑推理或多个步骤时,尤其是包含数学计算的任务,生成式人工智能(GenAI)可能会产生错误的答案。
如果汽油费用为200RMB,食物费用为250RMB,住宿费用为每天100RMB,1000RMB的预算是否足以支付5天的公路旅行?
链式思维(Chain-of-Thought,CoT)是一种提示技术,可以通过让生成式人工智能(GenAI)逐步思考并在过程中更加透明,从而提高回答的质量。
为了改善结果,你还可以通过提供完成任务所需的步骤来指导人工智能。
如果汽油费用为200元人民币,食物费用为250元人民币,住宿费用为每天100元人民币,1000元人民币的预算是否足以支付5天的公路旅行?
步骤 1:计算汽油和食物的总费用。
步骤 2:确定5天的住宿费用。
步骤 3:将所有费用加起来,看看是否在1000元人民币的预算范围内。
你还可以提供类似任务的推理示例。通过这种方式,你可以教导模型解决特定类型问题的逻辑。
解决任务使用以下示例和逐步解决方案:
示例任务: 如果预算为500元人民币,汽油费用为150元人民币,食物费用为100元人民币,住宿费用为每天50元人民币,是否足以支付3天的公路旅行?
示例解决方案:
步骤 1:计算汽油和食物的总费用:150元(汽油)+ 100元(食物)= 250元。
步骤 2:确定3天的住宿总费用:50元/天 × 3天 = 150元。
步骤 3:将所有费用加起来:250元(汽油和食物)+ 150元(住宿)= 400元。
结论: 500元人民币的预算可以支付这次3天的公路旅行,因为总费用为400元,低于500元。
需要解决的任务:
现在,让我们考虑一个不同的情况。如果预算为1000元人民币,汽油费用为200元人民币,食物费用为250元人民币,住宿费用为前2天每天100元人民币,接下来3天每天150元人民币,是否足以支付5天的公路旅行?
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。