大模型技术已经在多个场景中得到应用,如营销素材生成、电商直播、研报生成、知识检索、互动问答、合同审查、面试招聘、代码编写等。
大模型技术在产业中的应用
大模型技术的应用并没有像预期那样迅速带来巨大变革,但已经悄无声息地融入到业务场景中。AI Agent,也称为智能体,是大模型技术应用的最佳形态,它们具有自主性、感知能力和决策能力,帮助用户完成特定工作任务。
海外的谷歌和微软分别推出了各自的AI Agent应用,使大模型技术在业务中得到应用。谷歌与客户合作的六个关键领域AI Agent包括客户服务、员工赋能、代码创建、数据分析、网络安全以及创意构思和制作。微软在Dynamics 365中引入了十个Agent,以增强销售、服务、财务和供应链团队的能力。
在国内,京东言犀大模型打造的AI Agent深入业务全流程,展现了特色发展路径。京东拥有丰富的供应链场景和数据,为大模型技术的应用提供了最佳环境。这些应用从京东零售、物流、健康、金融等真实场景中发展而来,并逐渐通过京东云对外开放。
大模型技术在十个方向的应用
在ToC端寻找大模型技术的“杀手级”应用面临挑战,许多企业转向ToB端,寻求在企业级AI市场创造效益的商业模式。谷歌的研究团队对软件开发领域的AI应用进行了调查,发现使用AI辅助工具的开发人员完成任务的速度提升了超过20%。
京东云在城市大会上公布了大模型应用的十大场景,包括营销素材生成、电商直播、商品编码识别、研报生成、知识检索、互动问答、合同审核、面试招聘、城市治理、代码编写。在营销场景中,AIGC内容生成平台帮助商家一键生成店铺运营所需物料,内容制作效率提升了90%以上。京东云言犀数字人实现了零样本、高可控、零幻觉、实时的数字人生成,提供了多种个性化角色和行业特定属性场景。
在研发场景中,京东云智能编程助手JoyCoder提供了代码预测续写、注释生成代码、智能代码评审等功能。AI原生应用开发工具JoyBuilder内置了丰富的组件和前端模板,提升了研发效率40%。
在办公场景中,大模型技术也被应用于面试招聘,京东内部每天有上千名面试官使用面试智能体,面试效率提升了28%。京东开发的智能合同管理工具JoyLaw全面识别合同风险,一键生成审查报告,将合同审查时间缩短至分钟级。
智能体平台的发展
智能体平台是大模型技术落地的最佳载体,需要具备丰富的应用场景和行业知识,以及低开发门槛。京东云言犀智能体平台作为一站式AI Agent开发平台,已接入数十个大模型,用户可以低成本快速搭建基于AI模型的各类快捷应用。
通过言犀智能体平台,AI场景的探索落地时间从3个月缩短到1周,新应用的创建也从几个月时间研发一个应用,变为每个月产生上千应用。例如,人力资源工作人员通过智能体平台,2天就能搭建起一个AI视频剪辑应用,大幅提升了工作效率。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。