前段时间在清洗 sft 的数据,不得不说这工作是真磨人啊,细节多到让人抓狂。可能,这就是为什么从业者们都懂得 llm 的方法论,却依然没几个团队能造出好数据训出好模型吧。
借此机会,举个例子给大家聊聊 sft 数据能有多少繁琐的细节?也算是吐槽和分享自己的日常了。
先说一下为什么都 2024 年底了,还需要清洗 sft 数据,这不应该是去年就已经完成的工作吗?因为数据会过时,去年的高质量数据不代表今年还是高质量数据。
例如,user:你会选择猫作为宠物还是狗呢?
-
去年的大语言模型:作为大语言模型,我无法养宠物,吧啦吧啦。
-
今年的大语言模型:猫吧啦吧啦,狗吧啦吧啦,虽然我没有实体,但我推荐你吧啦吧啦。
显然,在去年,过度的安全是在大家的认可和接受范围之内的,但今年只会让用户觉着无趣,因此这条数据需要清洗,需要结合用户偏好和实效性重新标注再加人工重新 review —— 总之,只要模型还在迭代,我们清洗 sft 数据的工作就不会停滞。
题外话说完了,下面我以一个巨简单的 case 作为切入点,来谈谈 sft 的数据细节有多繁琐。这个 case 就是"以 json 格式输出"。
json 大家都很熟悉吧,我就不解释了。在我的认知里,json 就是能被 json.loads() 调用成功且不报错的字符串,想让模型做到以 json 格式输出也很简单,让 answer 过两行代码就搞定了。
data = json.loads(line) json_str = json.dumps(data, indent=2, ensure_ascii=False)
大家肯定不觉着 json 工作有啥好展开说的,但有没有一种可能,json 格式还有变种:
-
makrdown 格式,需要在字符串前后加 ``json 和 ``` ,一般默认都要带上;
-
indent = 4 呢 还是 indent = 2 呢还是 indent = 0 呢,prompt 说了还好办,prompt 要是没说呢,难道模型随机选一个数字来输出吗?我们需要统一 answer 中所有的 json 默认 indent;
-
有一种格式叫 jsonl,或者说是把 json 结果输出到一行中;
-
有一种需求叫不准进行 markdown 渲染;
-
有两种 prompt 分别叫:“先分析,再输出 json” 和 “除了 json,其他内容一律不准输出”;
-
……
emm,目前为止,大家可能还是不觉着 json 格式有多烦人,无非就是两个工作嘛:
-
选一个默认的 json 格式:带不带 markdown,indent 设置成几,是否输出在一行。然后把 sft 中所有涉及到的 json 数据全部清洗成这种格式;
-
补充那些对 json 格式有明确要求的 prompt,让模型不丢失灵活切换 json 格式的能力。
那我就继续提问:如果 prompt 里有 few_shot,但这个 few_shot 它是一个错误的 json,这时候是让模型模仿这个错误的 json 还是让模型严格按照 json 格式输出呢?
我随手测了下市面上体量最大的五家公司,好家伙给我五个答案 (do_sample = True):
-
4o: markdown + 标准 json + indent 2
-
豆包:标准 json + indent 0
-
kimi:markdown + few_shot_json + jsonl
-
qwen:few_shot_json + jsonl
-
文心:markdown + 标准 json + indent 4
你问我谁对,我只能说不知道。都是在尝试去 follow 格式,只不过有的模型是在 follow few_shot 的格式,有的模型是在 follow json 的格式。大家都对,全赢!我只是想用这个 case 强调,在**训模型的时候,我们可以选用任何一种 json 风格,但是一定要统一。**不要让模型随机出 json 风格,那不仅不利于模型训练,也会给用户的批量请求带来困扰。至于用哪种风格,让 PM 去调研一下客户需求即可。
大家也不要吐槽我的这个 prompt,觉着我是在没事儿找事儿,从业者应该都知道,这就是用户们最喜欢用的 prompt,你难道指望用户每次请求的时候,先去检验一下自己的示例是不是一个标准化 json 吗?单引号,中文引号,中文逗号,括号不匹配,……,各种错误比比皆是。
GPT4o
kimi
qwen 2.5
文心 3.5
豆包
到了这一步,你是不是有点认同我“以 json 格式输出”不是一个简单的工作了。但别着急,我还有一个问题要问:在数值任务上,针对数字,json 格式是使用 float / int 类型呢,还是 str 类型呢?
大家肯定都想选前者,我认同,但我要提醒一下,前者会影响模型的准确率,因为数值任务有个要素叫**“单位”。**
GPT4o
这里必须质问 ChatGPT 老师,我的单位“百万$” 去哪里了?虽然没有在 prompt 中明确指出要带单位,但这不应该是默认的常识吗?我们不能指望用户写出高质量的 prompt 呀。
当然,我并不是要为了拷打 ChatGPT 老师,我是想表达,在 next_token_prediction 的过程中,当模型的 “net_profit”: 的下一个 token 生成了数字 5,而不是双引号 " 的时候,神仙也救不回来这个 response 了。因为一旦没有输出引号,就代表模型选择了输出数值类型,那就必然没办法带单位了。这也就是我说的让模型习惯用 float / int 类型输出数值,可能会影响效果的原因。
不过也有补救办法,构造 sft 数据提醒模型每次额外输出一个 unit 字段。
{ "2018": { "net_profit": 5678, "unit": "百万$" } }
至此,“以 json 格式输出”的大多数细节,我已经强调完毕了。所有的细节总结下来,还是那句话:用什么格式不重要,只用一种格式很重要!
无独有偶,当我被 json 格式输出搞得焦头烂额的时候, 好友知乎@真中合欢 同学也遇到了类似的窘状。
之前他深入研究过数学任务一段时间,cot 数据不好造他不找我讨论,数据集翻译成中文后专有名词失真他不找我讨论,o1 造数据太贵他也不吐槽,但是他却因为一个问题来找我讨论:“你觉着模型输出的美元符号该不该带转义符号呢?”
-
数学数据有大量的 latex 表达式,都需要用 进行包裹起来,也就是:公式。那问题来了,美元 作为另外的含义,是不是得额外加个反斜杠呢?
-
当 表示美元的时候,它作为单位符号是不是不应该被公式$ 包裹起来(很多数据集包起来了)?
-
数值 1234 是不是应该全部写成 1,234?
-
如果全都要用 1,234 的表达方式,怎么实现批量替换呢?毕竟 公式 中的数字可不能给它加上这个逗号
-
……
这真是:你以为 llm 算法工程师在各种算法中挥斥方裘,实际上在和标点符号斗智斗勇。
最后强调一句,这仅仅是一个以 json 格式输出啊,sft 最基本的指令任务,至于那些复杂指令的数据如何构造、有多繁琐,只能靠大家自己去意会了。很多 llm 的工作不是想象中那么简单的,懂得怎么做仅仅是刚入门,只有实践了才知道有多少细节需要兼顾,有多少复杂的场景需要处理。我举的是洗符号、洗格式、洗 prompt 的例子,但还有更多的算法实践是举例举不出来的。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。