PaliGemma2 实战
from transformers import ( PaliGemmaProcessor, PaliGemmaForConditionalGeneration, ) from transformers.image_utils import load_image import torch model_id = "google/paligemma2-3b-ft-docci-448" url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg" image = load_image(url) model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto").eval() processor = PaliGemmaProcessor.from_pretrained(model_id) # Instruct the model to create a caption in English prompt = "caption en" model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch.bfloat16).to(model.device) input_len = model_inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False) generation = generation[0][input_len:] decoded = processor.decode(generation, skip_special_tokens=True) print(decoded)
PaliGemma 2解决的问题
- 模型的规模以及分辨率的影响:
-
PaliGemma 2提供了不同规模的模型(3B、10B、28B)
-
支持不同分辨率(224px², 448px², 896px²)的图像输入,适应各种视觉任务的需求。
-
下游任务的的迁移学习:
-
PaliGemma 2能迁移到30多个不同的学术任务,包括图像描述、视觉问答(VQA)等。
-
OCR任务:包括表格结构识别、分子结构识别、乐谱识别等。
-
图片描述任务:能生成包含丰富细节的长图像描述。
-
医学图像理解任务:在放射线报告生成等医学图像理解任务上表现出色。
PaliGemma 2的技术原理
-
模型架构:PaliGemma 2基于Gemma 2家族的语言模型,结合SigLIP-So400m视觉编码器。视觉编码器将图像转换为嵌入表示,基于线性投影映射到Gemma 2的输入空间。
-
核心思想:通过结合大规模的语言模型和高分辨率的视觉输入,提升模型在视觉语言任务上的性能。这种结合使得模型能够更好地理解和生成与视觉内容相关的语言描述。
-
多阶段训练:
-
预训练阶段:使用SigLIP-So400m视觉编码器和Gemma 2语言模型的预训练权重初始化PaliGemma 2。
-
联合训练阶段:联合预训练视觉编码器SigLIP-So400m和Gemma 2模型,在多模态任务上,以学习视觉和语言之间的关联。
-
提升分辨率阶段:依据上面三种分辨率,逐步提高输入图像的分辨率,以训练模型处理更高分辨率的视觉信息。
-
微调阶段:针对特定的下游任务对模型进行微调,以优化其在该任务上的性能。
PaliGemma 2下游任务
光学字符识别(OCR)
识别图像中的文字,用在文档数字化、历史文献存档和自动数据提取。
表格结构识别
从图像中提取表格结构和内容,用在财务报告分析、科学研究和数据整理。
对于复杂表格识别抽取能力相当强
图像识别与描述
自动生成图像的详细描述。
医学报告生成(VQA)
分子结构识别
在化学和生物医学研究中,识别和重建分子结构。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。