由于爬虫工作往往有大量数据需要爬取,便需要大量的备用IP更换,这时就需要用到代理IP池。将大量可以用于更换的代理IP汇聚要一起,便于管理和调用,IP池就这样产生了。IP池有一下特征:它里面的IP是持续补充的,会有源源不断的新的IP被加入到池子中。它里面的IP是有生命周期的,一但失效就会被清除出 IP池;它里面的IP是可以被任意取出,方便爬虫用户使用的。
很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!??¤
QQ群:623406465
免费ip其实是不适合搭建代理池的,因为数量上面不具备优势,而且很耗时,大家需要用时间来一一排查,要做就要做好,建议大家还是选择专业一点的提供商。
代理池主要分四个部分:IP抓取,IP有效性检测,IP存储,webAPI提供。示意图如下:
数据库选择redis,它的有序集合可以给插入值赋于一个"分数"用于排序存取值等等,我们可以利用分数绑定ip的可用性进行提取及检测管理。Redis有序集合的基本操作
- 爬取模块
该模块主要是采用爬虫去付费api或者代理网站来获取ip,加入数据库并设置初始分数50分。
在这里我采用了aiohttp异步采集,提高效率。所有爬虫基于父类开发。
class BaseCrawler(object):
urls = []
# new_loop = asyncio.new_event_loop()
# asyncio.set_event_loop(new_loop)
LOOP = asyncio.get_event_loop()
asyncio.set_event_loop(LOOP)
@retry(stop_max_attempt_number=3, retry_on_result=lambda x: x is None)
async def _get_page(self, url):
async with aiohttp.ClientSession() as session:
try:
async with session.get(
url, timeout=10
) as resp:
# print(dir(resp.content),resp.content)
return await resp.text()
except:
r