自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

沛哥儿的专栏

对阳光下的任何问题,要么有解决的办法,要么没有。如果存在一种解决办法,那就去寻找直到你找到它。如果没有解决的办法, 那就别将它放在心上

  • 博客(1036)
  • 资源 (24)
  • 问答 (2)
  • 收藏
  • 关注

原创 从Web开发到AI应用——用FastGPT构建实时问答系统

在传统Web开发中,我们习惯于通过API获取结构化数据、渲染页面、处理用户交互。而当AI能力(如大语言模型)逐渐成为应用的核心组件时,Web开发者其实拥有天然优势——我们早已熟悉“请求-响应”模型、服务编排、前后端协作等核心逻辑。本文将带领有Web开发背景的你,基于FastGPT平台,实战搭建一个结合实时网页爬取与RAG(检索增强生成)技术的智能问答系统。整个过程无需深度学习背景,只需掌握基本的HTTP请求、JSON处理和前端展示逻辑,即可快速上手AI应用开发。

2025-12-27 21:36:10 500

原创 Web开发者实战RAG三重评估:索引、响应与核心指标全解析

在Web开发中,我们深知一个功能上线需经过:数据层:数据库表结构是否合理?索引是否命中?服务层:API逻辑是否正确?响应是否符合契约?监控层:成功率、延迟、错误率是否达标?RAG(Retrieval-Augmented Generation)同样需要三层评估体系:索引评估(Index Evaluation) → 数据层“我的知识库切分和向量化是否合理?”响应评估(Response Evaluation) → 服务层“模型生成的答案是否准确、可靠?”指标评估(Metrics Evalua

2025-12-27 12:15:04 474

原创 Web开发者实战RAG评估:从指标到工程化验证体系

RAG不是确定性程序,而是概率性智能系统。它的输出受检索质量、上下文长度、模型幻觉等多因素影响。若不建立科学的评估体系,上线即“翻车”。对Web开发者而言,RAG评估不是AI黑盒,而是可工程化的质量保障流程:将评估指标转化为API健康检查用测试用例覆盖典型用户场景在CI/CD中集成自动化RAG验证

2025-12-27 12:04:07 570

原创 Web开发者实战多模态RAG:图表文检索系统从0到1

在传统Web开发中,我们处理的是结构化数据(JSON、数据库)和非结构化文本(Markdown、富文本)。但现实世界的信息远不止于此——图表、截图、流程图、产品示意图等视觉内容无处不在。当用户上传一张“系统架构图”并问:“这个架构用了哪些技术?”或者上传一份“销售趋势折线图”并问:“Q3增长的原因是什么?”传统纯文本RAG(Retrieval-Augmented Generation)完全无法回答。这就是多模态RAG的价值所在:让AI同时理解图像 + 文本 + 图表,并基于混合信息生成答案。

2025-12-27 12:00:41 404

原创 Web开发者进阶AI:Advanced-RAG上下文压缩与过滤原理及实战应用

在构建基于RAG(Retrieval-Augmented Generation)的AI Agent应用时,Web开发者常遇到一个核心瓶颈:检索返回的上下文过长、冗余甚至包含噪声,导致大模型响应慢、成本高、答案偏离重点。而 Advanced-RAG 中的 上下文压缩(Context Compression)与过滤(Context Filtering) 技术,正是解决这一问题的关键。本文将从Web开发者的视角出发,通过类比前端虚拟滚动、后端数据清洗等熟悉场景,深入浅出地解析上下文压缩与过滤的底层原理,并提

2025-12-26 07:15:00 648

原创 Advanced-RAG原理:RAG-Fusion 检索增强生成的多查询融合实战

在构建AI问答系统时,很多Web开发者会直接采用“用户输入 → 向量检索 → LLM生成”的经典RAG(Retrieval-Augmented Generation)流程。这就像我们在电商网站实现一个商品搜索框:用户输入“轻薄笔记本”,系统返回匹配的商品列表。但问题来了:用户的问题往往模糊、简略甚至带有歧义。比如:“怎么处理合同违约?”“推荐适合初学者的Python框架”传统RAG只用原始问题做一次向量检索,很容易漏掉关键文档——就像只用“违约”搜法律条款,却忽略了“解除合同”“赔偿标准”等同义

2025-12-26 06:30:00 492

原创 Web开发者快速上手AI Agent:提示词应用优化实战

在传统Web开发中,我们常常需要与产品经理反复沟通,将模糊的业务需求转化为清晰的技术方案。这个过程本质上是一种上下文对齐:确保前后端理解一致、接口设计合理、用户体验流畅。而在AI应用开发中,尤其是基于大语言模型(LLM)构建智能体(Agent)时,提示词(Prompt)就是我们的“产品需求文档”。一个模糊的提示词,就像一句“做个好看的登录页”——模型不知道“好看”是简约风、科技感,还是暗黑模式。而一个结构清晰、上下文明确的提示词,则如同一份带原型图、交互逻辑和API规范的PRD。因此,提示词优化 =

2025-12-26 06:15:00 1248

原创 Web开发者快速上手AI Agent:基于Advanced-RAG的提示词应用

在AI应用开发浪潮中,越来越多Web开发者希望将自身技术栈延伸至AI领域。然而,面对“Agent”“RAG”“提示词工程”等术语,不少前端或后端工程师感到无从下手。本文将从Web开发者的视角出发,通过类比熟悉的开发场景(如API调用、状态管理、组件复用),系统讲解如何基于Advanced-RAG架构优化Agent提示词,并提供可运行的Node.js + React端到端项目示例,助你平滑转型AI应用开发。

2025-12-25 23:52:26 646

原创 Web开发者快速上手Advanced RAG:索引优化原理与实践

在Web开发中,我们深知数据库索引对查询性能的决定性影响。一个没有索引的WHERE user_id = ?查询可能需要全表扫描,耗时数百毫秒;而加上B-tree索引后,响应时间可降至1毫秒以内。RAG(Retrieval-Augmented Generation)系统中的向量索引扮演着完全相同的角色——它决定了“从海量文档中检索相关信息”的速度与准确性。然而,传统RAG常因索引质量差导致“答非所问”或“漏检关键信息”。Advanced RAG通过索引阶段的深度优化(Pre-Retrieval Opt

2025-12-25 23:32:01 967

原创 Web开发者快速上手AI Agent:提示词应用优化实战

在传统Web开发中,我们常常需要对用户需求进行“翻译”和“细化”——比如产品经理说“页面要快”,我们需要转化为“减少首屏加载时间、启用懒加载、压缩静态资源”等具体技术方案。这种将模糊需求转化为可执行指令的过程,其实与AI提示词(Prompt)优化高度相似。当你向大语言模型(LLM)输入一句模糊的提示,比如“帮我写个登录页”,模型可能返回一个基础HTML片段;但如果你提供更结构化的上下文:“使用React + Tailwind CSS,包含邮箱验证、密码强度提示、第三方登录按钮,并适配移动端”,模型就能输

2025-12-25 23:28:36 736

原创 Web开发者实战:解决LangChain RAG“上下文与答案无关”问题的5大根因与优化方案

你是否遇到过这样的 RAG 困境?用户问:“如何重置密码?”系统检索到的上下文是:“我们的产品支持多因素认证…”LLM 却回答:“请访问登录页点击‘忘记密码’链接。”——答案正确,但上下文完全不相关!这种“幻觉式正确”极具迷惑性:用户以为系统靠谱,实则模型在“凭空编造”,一旦问题超出训练数据,立刻暴露。本文将从 Web 工程视角,深入剖析“上下文与答案无关”的五大技术根因,并提供可落地的优化方案,涵盖 检索质量、提示词设计、后处理验证 等关键环节,助你构建可解释、可信赖的企业级 RAG

2025-12-24 07:00:00 901

原创 Web开发者实战:LangChain RAG文档切分粒度优化——从“答非所问”到“精准命中”

在构建基于 LangChain 的 RAG(检索增强生成)系统时,许多 Web 开发者会陷入一个经典困境:“为什么用户问‘退货流程’,系统却返回了‘产品保修条款’?”根本原因往往不是模型不行,也不是向量数据库不准,而是——文档切分粒度过粗或过细。切太粗:一个 chunk 包含多个主题,检索时“沾边即中”,噪声大切太细:关键信息被切断,上下文丢失,模型无法理解本文将从 Web 工程视角出发,系统分析切分粒度问题的本质,并提供一套可落地的 多策略自适应切分方案,覆盖技术文档、FAQ、合同、代码等

2025-12-24 06:30:00 545

原创 Web开发者实战:解决LangChain RAG文档加载准确率低的5大痛点与优化方案

在构建基于 LangChain 的 RAG(检索增强生成)系统时,许多 Web 开发者会遇到一个“隐形杀手”:文档加载准确率低。表现为:PDF 中的表格变成乱码Word 文档丢失标题层级网页抓取只拿到导航栏,正文为空技术手册中的代码块被拼接成一行这些问题直接导致后续的向量化质量下降、检索结果不相关、最终回答错误——即使你用了最先进的 LLM,也难逃“垃圾进,垃圾出”的命运。本文将从 Web 工程视角出发,系统分析文档加载失败的五大根源,并提供可落地的优化方案,涵盖 PDF、Word、网页、

2025-12-23 21:29:31 535

原创 Web开发者必看:LangChain v1.0 三大革新解析与升级指南

如果你曾用过 LangChain 0.x 版本,可能经历过这些“痛”:不同模块 API 风格不一致(有的用 .call(),有的用 .invoke())想加日志或监控?只能硬改链路代码升级依赖后,@langchain/core 和 @langchain/openai 版本对不上就报错LangChain v1.0 正是为解决这些问题而生。它不是简单的小版本迭代,而是一次面向工程化、标准化、可维护性的架构重构。对于 Web 开发者而言,v1.0 的三大核心改进——接口统一、中间件系统、生态兼容优化

2025-12-23 08:00:00 653

原创 Web开发者实战LangChain RAG:构建企业级知识库问答系统

在Web开发中,我们熟悉“数据 → 处理 → 展示”的经典流程:从前端表单收集用户输入,后端查询数据库,再将结果渲染成页面。而如今,当企业希望用自然语言查询内部文档(如产品手册、技术规范、HR政策),这套逻辑依然成立——只是“数据库”换成了向量数据库,“SQL查询”换成了语义搜索。这就是 RAG(Retrieval-Augmented Generation) 的核心思想:先从海量文档中检索出与问题最相关的片段,再将这些片段作为上下文喂给大模型,生成精准回答。对于Web开发者而言,RAG 并非全新

2025-12-23 07:30:00 1201

原创 Web开发者玩转LangChain工具调用:从数据库查询到个人全能助手实战

在Web开发中,我们习惯通过 API 调用 获取外部能力:调用微信支付、查询天气服务、读取数据库。这些“工具”让应用超越自身逻辑,连接真实世界。LangChain 的 Tools(工具)机制 正是这一思想在AI Agent中的延伸:让大模型在需要时,主动调用你提供的函数(如查数据库、发邮件、算汇率),从而突破纯文本生成的局限。对于Web开发者而言,这相当于为LLM赋予了“后端接口调用权”。本文将从Web工程视角出发,详解 LangChain Tools 的核心概念,并通过两个实战项目——数据库查

2025-12-23 07:00:00 969

原创 Web开发者掌握LangChain Memory:多用户聊天机器人对话持久化实战

在Web开发中,我们早已习惯“状态管理”——无论是前端的 React useState、Vuex,还是后端的 Session、Redis 缓存。这些机制的核心目标是:让系统记住用户的历史行为,从而提供连贯体验。而在AI聊天应用中,“记忆(Memory)”扮演着完全相同的角色。没有记忆的聊天机器人,就像一个每次见面都忘记你是谁的朋友——即使它再聪明,也无法建立信任。LangChain 提供了强大的 Memory 模块,尤其是 ChatMessageHistory 和 RunnableWithMessa

2025-12-22 13:30:00 2300

原创 Web开发者玩转LangChain链与LCEL:构建多用户聊天机器人实战

在Web开发中,我们熟悉“中间件链”(如Express的app.use())、“数据管道”(如RxJS流)或“函数组合”(如Lodash flow)。这些模式的核心思想是:将复杂逻辑拆解为多个可复用、可组合的小单元,并按顺序或并行执行。LangChain 的 链(Chain) 和 LCEL(LangChain Expression Language) 正是这一思想在AI应用中的延伸。LCEL 不是一门新语言,而是一套基于 Runnable 接口的声明式编程范式,让你像搭积木一样组合提示词、模型、工具和解

2025-12-22 09:07:13 986

原创 Web开发者零障碍上手LangChain:核心体系与组件实战指南

作为Web开发者,你一定熟悉这样的代码:// Express中间件链app.use(authMiddleware);app.use(validateInput);app.use(callExternalService);app.use(formatResponse);每一层处理特定任务,最终组合成完整业务流。LangChain 正是为AI应用设计的“中间件编排框架”。它不训练模型,也不替代前端,而是帮你把“用户问题”一步步转化为“可靠答案”,就像Express把HTTP请求转化为JSON响

2025-12-22 09:05:15 1324

原创 Web开发者快速上手AI Agent:基于LangChain的提示词应用优化实战

在Web开发中,我们常常需要将模糊的业务需求转化为清晰的API接口或前端组件。这个过程依赖于精准的需求描述——如果产品经理说“做个好看点的登录页”,你可能做出十种不同的版本。而在AI应用开发中,提示词(Prompt)就是你的“产品需求文档”。一条模糊的提示词,比如“帮我写个总结”,往往导致模型输出泛泛而谈;而一条结构化的提示词,如“用3句话总结以下文章,突出技术亮点,并以Markdown列表形式输出”,则能获得高质量结果。对于Web开发者而言,LangChain 正是帮助我们将“模糊提示”转化为“结

2025-12-19 18:30:00 927

原创 Web开发者进阶AI Agent:LangChain提示词模板与输出解析器实战

在Web开发中,我们习惯通过模板引擎(如EJS、Handlebars)动态生成HTML,也依赖JSON Schema校验或Zod/Yup对API响应做结构化解析。这种“输入模板化 + 输出结构化”的工程思维,恰恰是构建可靠AI Agent应用的核心。LangChain 提供了两大关键能力:提示词模板(PromptTemplate):让自然语言输入可编程、可复用;输出解析器(OutputParser):强制模型返回结构化数据,便于前端消费。对于Web开发者而言,掌握这两项技术,就相当于掌握了“AI

2025-12-19 18:30:00 665

原创 Web开发者快速上手AI Agent:提示词应用优化实战

在Web开发中,我们经常面对“需求模糊”或“用户反馈不明确”的情况。此时,我们会通过不断迭代接口、调整逻辑、优化UI来逼近真实需求——这个过程本质上就是一种“提示优化”。而如今,在AI Agent开发中,“提示词(Prompt)”扮演着与Web开发中“接口参数”或“业务逻辑配置”类似的角色。一个糟糕的提示词就像一个设计不良的API:即使后端模型再强大,也难以输出理想结果。对于有Web技术背景的开发者而言,转型AI应用开发的关键突破口之一,正是将你熟悉的“需求—实现—验证”闭环思维迁移到Agent提示

2025-12-19 09:09:56 777

原创 Web开发者快速上手AI Agent:基于LlamaIndex的提示词应用优化实战

从Web需求优化到AI提示词优化在Web开发中,我们常常面临“用户需求模糊”或“业务逻辑不清晰”的问题。例如,产品经理说:“这个按钮要更智能一点。”——这种模糊表述需要前端/后端工程师通过沟通、拆解、原型验证等方式不断优化实现方案。**这和AI提示词(Prompt)优化的本质高度一致**: 大模型就像一个“超级实习生”,你给它一段模糊指令(如“帮我写个好用的功能”),它可能返回一堆无用代码;但如果你像Web需求评审一样,明确上下文、输入输出格式、边界条件,它就能产出高质量结果。

2025-12-18 06:15:00 940

原创 Web开发者快速上手AI Agent:提示词应用优化实战

作为 Web 开发者,你是否经历过这样的场景?产品经理说:“做个用户能自由提问的智能客服。”你问:“具体支持哪些问题?”回答:“就……啥都能问吧。”结果上线后,用户问“年假怎么休?”,AI 回答“建议多喝水”——因为提示词写得太泛。这和 Web 开发中“需求模糊导致功能跑偏”一模一样。提示词(Prompt)就是你给 AI 写的“需求文档”。而 Agent,则是那个能理解复杂指令、自动拆解任务、调用工具的“高级程序员”。本文将带你用熟悉的 Web 技术栈,实战构建一个 基于 Agent 的

2025-12-18 06:00:00 1039

原创 Web开发者进阶AI Agent:基于LlamaIndex构建企业级RAG Pipeline实战

在传统Web开发中,我们熟悉这样的数据流:用户上传PDF → 后端解析 → 存入数据库 → 前端搜索接口 → 返回结果而在AI时代,这个流程升级为 RAG Pipeline(Retrieval-Augmented Generation Pipeline):原始文档 → Loading(解析) → Indexing(建索引) → Storing(持久化) → Querying(查询) → 生成答案对Web开发者而言,RAG不是玄学,而是一套可工程化的数据处理流水线。LlamaIndex 就是这套流

2025-12-18 00:25:55 570

原创 Web开发者转型AI应用的实战指南:基于提示词的企业运营成本分析核算

在传统Web开发中,我们常常面对模糊不清的产品需求。一个优秀的前端或后端工程师,往往需要将这些“模糊需求”转化为清晰、可执行的逻辑代码。这个过程本质上就是一种“优化”——把不明确的输入,变成结构化、可落地的输出。而如今,在AI时代,提示词(Prompt)就相当于AI模型的“需求文档”。如果你给大模型一段模糊、冗长、缺乏上下文的提示词,它给出的结果很可能就像一个没写清楚PRD(产品需求文档)的功能一样——跑偏、低效、甚至完全错误。对于企业而言,运营成本分析是一项高频、复杂且对准确性要求极高的任务。如果

2025-12-17 19:40:10 1225

原创 Web开发者快速上手AI Agent:基于提示工程的旅游攻略系统实战

作为Web开发者,我们早已习惯于“需求澄清”——产品经理说“做个好看的页面”,我们要追问:好看是指配色?动效?还是响应式?这种不断细化模糊需求的过程,其实与AI领域的**提示词优化(Prompt Engineering)**高度相似。在AI应用开发中,模型就像一个能力强大但理解力有限的“外包程序员”——你给它一句模糊指令:“帮我生成一份旅游攻略”,它可能输出千篇一律的景点列表;但如果你像对待前端组件一样结构化地描述需求:“用户是情侣,预算5000元,偏好小众文艺目的地,行程3天2晚,需包含交通、住宿、美

2025-12-17 19:32:34 1165

原创 RAG提示词优化:从“能用”到“精准”的系统工程

2025年,随着Qwen3、Llama-4等超大上下文模型普及,RAG应用的瓶颈已从“能不能检索”转向“检得对不对、说得准不准”。IDC最新调研指出:在企业级RAG部署中,78%的失败案例源于提示词设计缺陷,而非模型或向量库性能不足。典型症状包括:检索返回高相关段落,但答案仍偏离事实(幻觉未被约束)用户问“A产品的价格”,模型却回答“B产品的参数”(上下文注意力漂移)系统对模糊问题一律回答“不知道”,用户体验差(缺乏意图扩展机制)本文将带你跳出“模板拼接”思维,构建一套可配置、可评估、可迭代的

2025-12-17 18:30:00 943

原创 Java 25新特性深度揭秘:LTS版本的全面进化与实战指南

Java 25不仅仅是技术更新,更是生态战略的体现降低入门门槛:简化语法吸引更多初学者拥抱云原生:优化启动性能和内存效率面向未来安全:提前布局后量子加密现代化并发模型:为虚拟线程时代做准备对于开发者而言,即使项目暂时不迁移,了解这些新特性也能把握Java的发展方向。语法的简化、并发模型的改进、性能的优化,这些趋势将在未来几年逐渐成为主流。Java 25证明了这个28岁"老将"依然充满活力,正在以更简洁、更高效、更安全的姿态,迎接下一个十年的挑战。参考资料JDK 25新特性速览。

2025-12-16 09:49:34 1130

原创 Prompt Engineering 基础原理:从入门到实践

Prompt(提示词)就像是你给AI的"指令"或"问题描述"。想象一下,你是一位厨师,AI是你的助手——如果你只说"做顿饭",助手可能不知所措;但如果你说"做一份番茄炒蛋,要酸甜口味,鸡蛋要嫩",助手就能做出符合你期望的菜品。Prompt Engineering(提示工程)就是设计高质量提示词的艺术和科学。通过优化提示词,我们可以让AI更准确、更高效地完成任务。这不仅仅是"问问题",而是系统性地设计沟通方式,让AI理解我们的真实意图。

2025-12-15 06:30:00 1098

原创 LightRAG 系列 9:实战项目——构建内部知识库问答机器人

企业内部往往堆积了大量 PDF 手册、FAQ、制度文档,但员工查找信息仍需反复询问 HR 或 IT。知识若不能快速流转,便毫无价值。本章将指导您用 LightRAG + FastAPI 构建一个私有化、低延迟、可溯源的内部问答机器人,全程无需联网,且完全掌控数据流向。

2025-12-15 06:00:00 306

原创 Naive RAG Pipeline:从数据到智能检索的完整技术实现

在当今大模型技术浪潮中,检索增强生成(Retrieval-Augmented Generation,RAG)已成为解决大模型幻觉问题、提升知识准确性的关键技术路径。Naive RAG,又称Baseline RAG或Native RAG,是RAG技术的最原始形态,它构成了后续所有高级RAG变体的基础框架。Naive RAG的核心价值在于其简洁的三段式架构:索引(Indexing)→ 检索(Retrieval)→ 生成(Generation)。这种"毛坯房"版的设计虽然简单,却为理解RAG系统的工作原理提供

2025-12-14 20:09:27 789

原创 RAG不是万能药,但没有RAG你可能寸步难行

2025年,大模型(Large Language Model, LLM)已广泛应用于客服、智能办公、代码生成等场景。然而,当你让一个通用大模型回答“我们公司最新版产品手册第3.2节提到的API限流策略是什么?”时,它大概率会胡编乱造——这就是典型的幻觉(Hallucination)问题。IDC 2025Q2报告显示,78%的企业在部署LLM时遭遇过因知识陈旧或虚构内容导致的业务风险。而RAG(Retrieval-Augmented Generation,检索增强生成)正是解决这一痛点的核心技术路径。本文将从

2025-12-14 18:57:17 819

原创 LightRAG 系列8:最佳实践与避坑指南

LightRAG 的真正优势,不在于它比 LangChain 更轻,而在于它引入了一个双引擎检索架构:向量引擎:处理语义相似性(“这句话像什么?”)图引擎:处理逻辑关联性(“这件事和谁有关?怎么推导?”)许多团队只启用了前者,结果把 LightRAG 当成一个“快一点的 FAISS 封装”,错失了其支持多跳推理、上下文聚合与关系溯源的能力。本章从系统集成角度出发,聚焦三个关键设计维度:图构建质量、查询路由策略、增量演进机制,帮助您构建一个既高效又可维护的 RAG 系统。

2025-12-11 18:24:29 1087

原创 LightRAG 系列 7:核心技术解析——整合检索与生成模块,完整走通 LightRAG 的端到端工作流

你已经学会了向量化、HNSW 索引、重排序……但这些模块如何协同工作?当用户输入一个问题,LightRAG 内部究竟经历了哪些步骤才返回一个可信答案?理解端到端工作流,是避免“黑盒式开发”、实现可调试、可优化 RAG 应用的前提。本节将拆解 LightRAG 从 insert 到 query 的完整生命周期,并提供一个可部署的 Web 示例,助你构建真正生产就绪的智能问答系统。

2025-12-11 06:00:00 962

原创 LightRAG 系列 6:核心技术解析——检索策略:Top-K + 重排序(Re-ranking)提升精度

在 RAG 系统中,召回率(Recall)决定你是否能找到相关信息,而排序质量(Ranking Quality)决定用户是否能立刻看到最相关的答案。LightRAG 默认的向量检索虽快,但面对复杂语义时,常出现“相关片段被排在第 10 位,而前 3 位是干扰项”的问题。为此,LightRAG 引入 两阶段检索策略:先用 HNSW 快速召回 Top-K 候选,再通过重排序(Re-ranking)精炼结果。本节将详解这一机制,并演示如何在 Web 应用中启用它,显著提升问答准确率。

2025-12-10 06:15:00 1060

原创 LightRAG 系列 5:核心技术解析——HNSW 索引机制与 Web 应用中的毫秒级检索

你是否曾遇到这样的困境:本地 RAG Demo 跑得飞快,但一部署到 Web 服务就变“龟速”?问题往往不在模型,而在索引选型与集成方式。LightRAG 默认采用 HNSW(Hierarchical Navigable Small World)作为向量索引引擎,正是因为它能在普通 CPU 服务器上实现亚秒级甚至毫秒级检索,且内存占用可控。本节将深入 HNSW 原理,并手把手教你将其无缝嵌入 FastAPI/Flask 应用,打造真正可用的智能问答后端。

2025-12-10 06:00:00 823

原创 ightRAG 系列 4:核心技术解析——检索模块详解

在 LightRAG 中,用户提问后不到 1 秒就能获得精准答案,背后最关键的一步就是**将文字转化为数字**。这个过程称为“向量化”(Embedding),它让计算机能像处理图像像素一样“理解”语义。对 Web 开发者而言,无需掌握复杂的数学推导,但必须理解:**选对向量模型 = 决定问答系统上限**。本节将用类比+代码,拆解 LightRAG 如何高效完成这一转换。

2025-12-10 00:09:41 1239

原创 LightRAG系列3:LightRAG 环境准备与快速启动

对 Web 开发者而言,评估一个新工具是否值得投入,关键看“从零到可运行 Demo 需要多久”。LightRAG 的设计哲学之一就是“开箱即用”——无需配置复杂的向量数据库、不用申请 API 密钥、甚至不需要 GPU。本节将带你用 3 条命令 + 10 行代码,在本地运行一个能回答问题的智能知识库,真正实现“所见即所得”。

2025-12-08 06:30:00 977

原创 LightRAG系列2:什么是 LightRAG?它和 LangChain 有什么区别?

当你决定为产品加入“智能问答”功能时,可能会在 GitHub 上看到两个热门选项:LangChain 和 LightRAG。前者星标超 10 万,生态庞大;后者轻巧简洁,专为效率而生。但对大多数 Web 开发者而言,盲目选择“更流行”的工具,反而会陷入过度工程化的泥潭。理解两者的本质差异,是避免技术选型失误的第一步。

2025-12-07 19:58:12 1196

seo基础指南.pdf

seo 基础 指南 SEO入门 SEOSEOSEO

2009-11-19

数据安全分级标准信息汇总

数据安全分级标准信息汇总

2024-09-12

新版Json.NET学习笔记

Json.NET中文文档彻底解析,简而言之,这是一个能够用于.NET的Json辅助工具类。它能够将对目标序列化为json字符串,Newtonsoft.Json.JsonConvert类对错微软供给的一个JSON序列化和反序列的开源免费的类库,它供给了更灵敏的序列化和反序列化操控,而且若是你的开发环境运用的是.NET Framework3.5及今后版别的话,你就能够运用Linq to JSON,这样一来面临一大段的数据不用逐个解析,你能够运用Linq to JSON解分出你关怀的那有些即可,十分便利。

2013-08-28

NHibernate入门资料

NHibernate入门资料,适合入门人员进行学习使用 NHibernate从入门到精通系列(1)——NHibernate概括 NHibernate从入门到精通系列(3)——第一个NHibernate应用程序 NHibernate从入门到精通系列(4)——持久对象的生命周期 NHibernate从入门到精通系列(6)——基本映射

2013-04-12

net Ajax控件包

1 Accordion 2 AccordionPane 实现多面板,每次都只显示一个,其他收藏起来,可以设置显示隐藏的时间和渐变效果哦 3 AlwaysVisibleControlExtender 这个东西是将VerticalSide的值设置好后无论页面的滚动条滚动,这个目标控件一直都显示在页面的那个位置 4 AnimationExtender 5 AnimationExtenderControlBase 实现控件中内容的动画效果(移动、变化 大小、淡如淡出、变颜色等) 6 AutoCompleteExtender 自动的提示功能,在Google和丁丁地图中都用实现效果,不错的哦 7 CalendarExtender 日历控件 8 CascadingDropDown 级联下拉菜单 9 CollapsiblePanelExtender 点击某个控件,显示一个特定的面板和隐藏那个特定的面板 10 ConfirmButtonExtender 弹出一个确认按钮 11 DraggableListItemExtender 12 DragPanelExtender 拖动控件,将某个面板可以拖动,范围在该页面内 13 DropDownExtender 给任意控件添加下拉菜单 14 DropShadowExtender 将某个面板添加阴影 15 DynamicPopulateExtender 动态生成控件中的内容 16 FilteredTextBoxExtender 可以控制文本框中的输入内容,可以是系统的表达式(FilterType="LowercaseLetters/Numbers")也可以是自定义的(FilterType="Custom") 例如:FilterType="Custom, Numbers" ValidChars="+-=/*()." /> 表示只能输入数字和自定义的"+-=/*()." 这几个符号。。。 17 HoverExtender 18 HoverMenuExtender 鼠标放在某个控件上显示一个特定的面板 19 ListSearchExtender 为下拉菜单添加字母查找功能 20 MaskedEditExtender 21 MaskedEditValidator 输入框格式限定功能 22 ModalPopupExtender 出现模式对话框功能 23 MutuallyExclusiveCheckBoxExtender 多个选项某个选项独占功能 24 NoBot 防爬虫/机器输入功能 25 NumericUpDownExtender 数字值增减,这个效果经常看到哦,Kijiji上面就有的好像 26 PagingBulletedListExtender 按字母顺序的bbs功能 27 PasswordStrength 根据输入的密码客户端提示你输入密码的安全性 28 PopupControlExtender 29 PopupExtender 给任意控件添加一个需要弹出的控件或者面板 30 Rating 评级控件 31 ReorderList 任意添加列表内容并更改列表顺序 32 ResizableControlExtender 控件大小改变 33 RoundedCornersExtender 圆角大小 34 SliderExtender 类似音量大小那种拖动条空间 SlideShowExtender 幻灯片一张张播放图片,没有这个东西的时候做死人,用javascipt中写的 35 TabContainer 36 TabPanel tab控件 这个控件比较常用的哦,有个TabContainer1.ActiveTabIndex = 1; 来设置页面加载的时候显示第几个,默认值为最大的那个,从0开始的哦。 37 TextBoxWatermarkExtender 文本输入框提示文字控件,这个也是友好信息吧,一点就没有了。o(∩_∩)o...哈哈 38 ToggleButtonExtender 可改变的按钮,实际上是一个有图片的checkbox 39 UpdatePanelAnimationExtender 在某个特定的面板中数据更新的时候该面板显示出来的动画效果 40 ValidatorCalloutExtender 增强的输入验证控件

2010-10-09

VSS.2005 汉化包

VSS 的全称为 Visual Source Safe 。作为 Microsoft Visual Studio 的一名成员,它主要任务就是负责项目文件的管理,几乎可以适用任何软件项目。管理软件开发中各个不同版本的源代码和文档,占用空间小并且方便各个版本代码和文档的获取,对开发小组中对源代码的访问进行有效的协调。 VSS汉化插件可以让许多英语不是很好的朋友使用起来更加方便。 安装:安装完VSS之后,直接解压运行即可。非常方便

2010-10-09

SQL prompt4 + 注册机

SqlPrompt 是 Red-Gate 旗下的一款 SQL SERVER 辅助软件,为 SQL SERVER 的查询分析器 提供智能提示的功能,使得查询分析器像VS的IDE一样方便;同时提供SQL语句的格式化和美化工作,是款非常不错的软件,对于SQL SERVER 2000的用户是非常值得推荐的;SQL 2005 和 2008 本身的查询分析器自带了智能提示功能(虽然没有SqlPrompt强大,但总归原生的好些)。 与SqlPrompt类似的,还有 SqlAssistant, 此软件本来是免费的,后来也变成了商业软件 ;SqlPrompt 是Red-Gate公司的SqlTablet集合中的一个而已,像其他的如:SqlDoc 之类的,也是很不错。 SqlTablet套件,默认是提供14天的免费试用期,试用期间无功能限制,超过14天,将不能再使用,我这里提供一个老外写的试用期清零工具,就可以无限期使用了 。 破解说明: 按照英文提示操作就可以。 先断网,关闭一切相关程序(包括sqlprompt程序),然后打开SQL Server Management Studio 选择上方的“Sql Prompt4” --》"Serial NUmber" -->"Enter Serial Number" 1,生成序号(点击1再点击2) 2,到sqlprompt里填序号,选择手动激活 3,把sqlprompt最后生成的那段拷贝到Keygen的大文本框中,点生成 4,再反过来把Keygen生成的代码拷贝到sqlprompt中, 5,finish

2010-05-24

国家地区代码JSON.txt

各个国家地区的代码,手机区号,中英文对照都有了。可以直接拿着这个去加入到表中,不需要手动填充了

2021-09-23

2020淘宝最新类目大全

淘宝最新的类目,SQL语句直接导入到数据库即可使用,非常适合电商新人使用,可以剩下大量的编辑时间。居家旅行必备。

2020-12-01

一套鼠键多台电脑控制利器synergy1.8.8.rar

Synergy 可以在多台电脑之间共享鼠标、键盘、剪贴板。开源,跨 Win、Linux、Mac。压缩包里面包含 Win、Linux、Mac三个包

2019-05-09

Synergy_V1.8.8.zip

局域网内一套键鼠控制多台电脑的神器。

2021-03-11

mayas系统工具

teaxc开发软件,一般人都可以用的到的

2012-09-27

Rtf Editor rtf编辑器

rtf编辑器来的。基本功能没问题。很是实用

2015-01-09

学习工具集\editplus3绿色中文扩展版(含精选自动完成文件.语法高亮文件和高级使用技巧文萃).rar

学习工具集\editplus3绿色中文扩展版(含精选自动完成文件.语法高亮文件和高级使用技巧文萃).rar

2008-11-25

Mysql 5.1 中文 文档

MySQL是一个多线程的,结构化查询语言(SQL)数据库服务器。SQL 在世界上是最流行的数据库语言。MySQL 的执行性能非常高,运行速度非常快,并非常容易使用。是一个非常棒的数据库。 中文文档CHM非常方便开发时查询使用。

2010-10-09

Northwind&pubs数据库.rar

Northwind&pubs数据库 mssql2000内置的数据库

2009-11-11

CSS完全参考手册3.0.chm

本参考手册是在《完美网页设计CSS快速参考》基础上进行的第3次重要升级,同时参考了W3C官方网站信息、微软DHTML参考资料,以及苏昱的《样式表中文手册》信息

2009-11-19

ajax实现自动提示搜索

ajax实现自动提示搜索代码.还可以的啊

2013-12-05

profiler插件

Profiler 性能跟踪、测量工具,能跟踪、测量BS程序

2009-11-11

tomcatPluginV321.zip

tomcatPluginV321.zip

2008-11-25

ibatis-2.3.4.726.zip

ibatis-2.3.4.726.zip ibatis框架

2009-09-02

javaservlet帮助文档

javaservlet帮助文档是一个不错的东东,可以下载下去看看

2008-11-25

C语言入门教程chm

C语言 语言 入门 chm.一本比较齐全的chm入门资料整理。后面还附有100个编程实例。有需要的朋友可以下载下来看下

2010-12-22

Linux常用命令全集

Linux常用命令全集,包含常用的Linux命令

2009-09-01

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除