包含编程籽料、学习路线图、爬虫代码、安装包等!【点击领取!】
前言
作为数据分析师、财务人员或办公自动化爱好者,Excel表格操作是我们日常工作中不可或缺的一部分。而Python凭借其强大的数据处理能力,可以极大地提升我们操作Excel的效率。本文将介绍10个必学的Python脚本,帮助你自动化处理Excel表格,节省大量重复劳动时间。
1. 读取Excel文件
使用openpyxl或pandas库可以轻松读取Excel文件:
import pandas as pd
# 读取Excel文件
df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
# 显示前5行数据
print(df.head())
2. 写入Excel文件
将处理后的数据保存回Excel:
# 创建一个DataFrame
data = {'Name': ['John', 'Anna', 'Peter'],
'Age': [28, 24, 35]}
df = pd.DataFrame(data)
# 写入Excel文件
df.to_excel('output.xlsx', index=False)
3. 合并多个Excel文件
批量处理多个Excel文件时,合并是非常常见的需求:
import os
# 获取当前目录下所有xlsx文件
files = [f for f in os.listdir('.') if f.endswith('.xlsx')]
# 合并所有文件
combined_df = pd.DataFrame()
for file in files:
df = pd.read_excel(file)
combined_df = pd.concat([combined_df, df], ignore_index=True)
# 保存合并后的文件
combined_df.to_excel('combined.xlsx', index=False)
4. 筛选和排序数据
Python可以轻松实现复杂的数据筛选和排序:
# 筛选年龄大于25的记录
filtered_df = df[df['Age'] > 25]
# 按姓名升序排列
sorted_df = df.sort_values(by='Name')
# 多重排序:先按年龄降序,再按姓名升序
multi_sorted = df.sort_values(by=['Age', 'Name'], ascending=[False, True])
5. 数据透视表
创建类似Excel中的数据透视表:
# 假设df包含'Salesperson', 'Region', 'Sales'等列
pivot_table = pd.pivot_table(df,
values='Sales',
index='Salesperson',
columns='Region',
aggfunc='sum',
fill_value=0)
pivot_table.to_excel('pivot_table.xlsx')
6. 条件格式设置
使用openpyxl实现类似Excel的条件格式:
from openpyxl import load_workbook
from openpyxl.styles import PatternFill
# 加载工作簿
wb = load_workbook('data.xlsx')
ws = wb.active
# 创建红色填充
red_fill = PatternFill(start_color='FF0000', end_color='FF0000', fill_type='solid')
# 对B列中值小于50的单元格应用红色背景
for row in ws.iter_rows(min_col=2, max_col=2):
for cell in row:
if isinstance(cell.value, (int, float)) and cell.value < 50:
cell.fill = red_fill
# 保存修改
wb.save('formatted.xlsx')
7. 批量重命名工作表
from openpyxl import load_workbook
wb = load_workbook('data.xlsx')
# 重命名所有工作表
for i, sheet in enumerate(wb.sheetnames, start=1):
ws = wb[sheet]
ws.title = f'Sheet_{i}'
wb.save('renamed.xlsx')
8. 提取特定列到新文件
# 提取'Name'和'Email'列到新文件
extracted_df = df[['Name', 'Email']]
extracted_df.to_excel('extracted_data.xlsx', index=False)
9. 自动填充公式
from openpyxl import load_workbook
wb = load_workbook('data.xlsx')
ws = wb.active
# 在C列添加SUM公式
for row in range(2, ws.max_row + 1):
ws[f'C{row}'] = f'=SUM(A{row}:B{row})'
wb.save('with_formulas.xlsx')
10. 发送带Excel附件的邮件
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email import encoders
# 设置邮件内容
msg = MIMEMultipart()
msg['From'] = 'your_email@example.com'
msg['To'] = 'recipient@example.com'
msg['Subject'] = '自动发送的Excel报表'
# 添加正文
body = "请查收附件中的Excel报表。"
msg.attach(MIMEText(body, 'plain'))
# 添加附件
filename = "report.xlsx"
attachment = open(filename, "rb")
part = MIMEBase('application', 'octet-stream')
part.set_payload(attachment.read())
encoders.encode_base64(part)
part.add_header('Content-Disposition', f"attachment; filename= {filename}")
msg.attach(part)
# 发送邮件
server = smtplib.SMTP('smtp.example.com', 587)
server.starttls()
server.login('your_email@example.com', 'your_password')
text = msg.as_string()
server.sendmail('your_email@example.com', 'recipient@example.com', text)
server.quit()
最后:
希望你编程学习上不急不躁,按照计划有条不紊推进,把任何一件事做到极致,都是不容易的,加油,努力!相信自己!
文末福利
最后这里免费分享给大家一份Python全套学习资料,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,也可以和我一起来学习交流呀。
包含编程资料、学习路线图、源代码、软件安装包等!【点击这里领取!】
① Python所有方向的学习路线图,清楚各个方向要学什么东西
② 100多节Python课程视频,涵盖必备基础、爬虫和数据分析
③ 100多个Python实战案例,学习不再是只会理论
④ 华为出品独家Python漫画教程,手机也能学习