Python 函数声明先后顺序的问题!

在 Python 中如果把函数定义写在调用的下方可能会出错,例如下面的代码

foo()
def foo():      print("hello")

执行时会报出错误

Python资源共享群:484031800

NameError: name 'foo' is not defined

这时候要把 foo() 调用代码放到该函数的声明后面

def foo():      print("hello")
foo()

这样执行就一切正常了。这仿佛像是 C 语言中的函数调用需要提前声明一般,例如在 C 语言中要调用后头的定义的函数要写成

void foo();
 
int main() {
    foo();
}
 
void foo() {
    printf("Hello");
}

实际上 Python 中并不存在函数提前声明一说,也不能像 Java 那样函数可以写在任意位置,因为 Java 是编译型的语言,Python 是解释型的。

而且也不是一定要求被调用的函数一定要在源代码层面上定义在调用者前方。

Python 中函数声明的顺序据我理解有两条规则

  1. Python 源代码是由上往下解析的
  2. 找到程序入口(未包含在函数中的代码) 即开始执行,执行到的函数未被先行解释到即报错

分析下面两段代码

def foo():
    bar()
 
if __name__ == '__main__':
    foo()
 
def bar():
    print("hello")

Python 从第 1 行一直解析到第 4 行的入口,进而往回跳,调用到第 1 行的 foo() 函数,而其中的 bar() 函数还未及被解析到,所以会提示

NameError: name 'bar' is not define

如果把程序入口往后调

def foo():
    bar()
 
def bar():
    print("hello")
 
if __name__ == '__main__':
    foo()

上面代码执行无误,输出

hello

foo() 调用的 bar() 不也是在它下方声明的吗?所以这一点与 C 是有区别的。

这时候的理解是这样的,Python 从第 1 行自上往下解析到第 7 行的程序入口时,foo() 并未实际调用 bar(),但 foo() 和 bar() 函数都已解析到了,所以回过头来 foo() 与 bar() 之间怎么调用都无妨。

因此, 最好的实践方法就是把程序的入口放到代码的最下方,那么它前面的函数不管如何的声明顺序都没有关系 。 

### 向数组开头添加数据的函数 在 Python 中,可以使用多种方法实现向数组(列表或其他结构)的开头添加数据的功能。以下是几种常见的实现方式: #### 使用 NumPy 的 `numpy.insert` 方法 NumPy 提供了一个灵活的方法来插入元素到指定位置。如果希望在数组的开头添加数据,可以通过设置索引为 0 来完成此操作。 ```python import numpy as np arr = np.array([2, 3, 4]) new_arr = np.insert(arr, 0, [1]) # 在索引 0 处插入值 1 print(new_arr) # 输出: [1 2 3 4] ``` 这种方法适用于处理一维或多维数组的情况[^1]。 #### 使用标准库中的列表切片技术 对于普通的 Python 列表,可以直接通过加法运算符 (`+`) 或者切片语法将新元素添加到列表的开头。 ```python lst = [2, 3, 4] new_lst = [1] + lst # 将单个元素作为列表拼接到原列表前 print(new_lst) # 输出: [1, 2, 3, 4] # 如果要添加多个元素 multiple_elements = [0, 1] combined_list = multiple_elements + lst print(combined_list) # 输出: [0, 1, 2, 3, 4] ``` 这种简单的方式非常适合小型项目或脚本开发[^2]。 #### 自定义函数模拟前置功能 当需要频繁执行此类操作时,也可以创建一个自定义函数封装逻辑。 ```python def prepend_to_array(array, value): return np.insert(array, 0, value) original_array = np.array([2, 3, 4]) updated_array = prepend_to_array(original_array, 1) print(updated_array) # 输出: [1 2 3 4] ``` 以上代码片段展示了如何构建可重用的工具函数以便简化后续调用过程[^1]。 ### 总结 无论是利用强大的第三方库如 NumPy 还是依赖内置的数据类型特性,都有简便有效的途径达成目标即把新的项放置于现有集合最前端的位置之上。具体选择取决于实际应用场景以及个人偏好等因素影响下的权衡考量结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值