python matplotlib下载

先下载python,在终端下载跟着步骤

python -V 检验

打开cmd

sublime

在cmd下载matplotlib

先下载pip代码如下

python -m pip install -Upip setuptools

 在下载matplotlib 代码pip install matplotlib

 做好了打开sublime

敲代码 柱状图

 plt.bar 是对柱状图格式绘制,color颜色,hatch是里面的图案

  • hatch: 设置填充样式
  • 属性取值:{'/', '', '|', '-', '+', 'x', 'o', 'O', '.', '*'} |

 如果要每个柱状图的柱子都不一样的图案怎么做呢

patterns

hatch=patterns

 得到不同的图案

如果需要将X轴的坐标设置为文字,需要使用XTick和XTickLabel属性,举例如下:


x = 0 : 24;
y = x .^ 2;
plot (x, y, '*-', 'linewidth', 2);
set(gca, 'xTick', [0:6:24]);
set(gca,'XTickLabel',{'00:00','06:00','12:00','18:00','24:00'})
set(gca, 'FontSize', 18);
xlim([0, 24])
 

x=np.array(['naruto','sasuke','sakura'])#x轴3个数据

多图合一

plt.subplot(坐标)

 

 网格线plt.grid()

一个柱状图,多个不同的花纹hatch=['*','|','x','-','/','\\','o']

 

 字体倾斜大小

 设置画布大小

 

保留小数点

设置坐标最大最小

plt.ylim(ymin,ymax)

非常抱歉,我之前提供的代码存在错误。在 PyTorch 中,并没有直接提供离散余弦变换(DCT)的函数。对于 DCT 的实现,你可以使用 `torch.rfft` 函数结合 DCT 系数矩阵来进行计算。 下面是一个修正后的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim # 定义离散余弦变换(DCT)系数矩阵 dct_matrix = torch.zeros(256, 256) for i in range(256): for j in range(256): dct_matrix[i, j] = torch.cos((2 * i + 1) * j * 3.14159 / (2 * 256)) # 定义 OMP 算法 def omp(A, y, k): m, n = A.shape x = torch.zeros(n, 1) residual = y.clone() support = [] for _ in range(k): projections = torch.abs(A.t().matmul(residual)) index = torch.argmax(projections) support.append(index) AtA_inv = torch.linalg.inv(A[:, support].t().matmul(A[:, support])) x_new = AtA_inv.matmul(A[:, support].t()).matmul(y) residual = y - A[:, support].matmul(x_new) x[support] = x_new return x # 加载原始图像 image = torch.randn(256, 256) # 压缩感知成像 measurement_matrix = torch.fft.fft(torch.eye(256), dim=0).real compressed = measurement_matrix.matmul(image.flatten().unsqueeze(1)) # 使用 OMP 进行重构 reconstructed = omp(dct_matrix, compressed, k=100) # 计算重构误差 mse = nn.MSELoss() reconstruction_error = mse(image, reconstructed.reshape(image.shape)) print("重构误差:", reconstruction_error.item()) ``` 在这个示例中,我们手动定义了 DCT 系数矩阵 `dct_matrix`,然后使用 `torch.fft.fft` 函数计算测量矩阵,并进行实部提取。接下来的步骤与之前的示例相同。 请注意,这只是一个示例,用于演示如何使用自定义的 DCT 系数矩阵进行压缩感知成像。在实际应用中,你可能需要根据具体的需求进行调整和优化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值