Pattern Recognition

本文探讨了神经网络中验证数据的重要性,用以确保网络泛化能力并避免过拟合。此外,还讨论了神经元数量及层数对计算需求的影响,以及如何平衡这些因素以解决更复杂的问题。最后介绍了模式识别网络采用的Scaled Conjugate Gradient训练算法。
部署运行你感兴趣的模型镜像

1.Divide data for validating:
validating data: that the network is generalizing and to stop training before overfitting.
2.About number of neurons and layers:
More neurons require more computation, and they have a tendency to overfit the data when the number is set
too high, but they allow the network to solve more complicated problems. More
layers require more computation, but their use might result in the network solving
complex problems more efficiently. To use more than one hidden layer, enter the
hidden layer sizes as elements of an array in the patternnet command.
3.The pattern recognition network uses the default Scaled
Conjugate Gradient (trainscg) algorithm for training.

您可能感兴趣的与本文相关的镜像

Qwen-Image

Qwen-Image

图片生成
Qwen

Qwen-Image是阿里云通义千问团队于2025年8月发布的亿参数图像生成基础模型,其最大亮点是强大的复杂文本渲染和精确图像编辑能力,能够生成包含多行、段落级中英文文本的高保真图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值