1.Divide data for validating:
validating data: that the network is generalizing and to stop training before overfitting.
2.About number of neurons and layers:
More neurons require more computation, and they have a tendency to overfit the data when the number is set
too high, but they allow the network to solve more complicated problems. More
layers require more computation, but their use might result in the network solving
complex problems more efficiently. To use more than one hidden layer, enter the
hidden layer sizes as elements of an array in the patternnet command.
3.The pattern recognition network uses the default Scaled
Conjugate Gradient (trainscg) algorithm for training.
Pattern Recognition
最新推荐文章于 2020-03-14 23:47:49 发布
本文探讨了神经网络中验证数据的重要性,用以确保网络泛化能力并避免过拟合。此外,还讨论了神经元数量及层数对计算需求的影响,以及如何平衡这些因素以解决更复杂的问题。最后介绍了模式识别网络采用的Scaled Conjugate Gradient训练算法。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
Qwen-Image
图片生成
Qwen
Qwen-Image是阿里云通义千问团队于2025年8月发布的亿参数图像生成基础模型,其最大亮点是强大的复杂文本渲染和精确图像编辑能力,能够生成包含多行、段落级中英文文本的高保真图像

1087

被折叠的 条评论
为什么被折叠?



