自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

凌桑的自我修养--You are the Eternity

大其愿,坚其志,虚其心,柔其气

  • 博客(164)
  • 资源 (1)
  • 收藏
  • 关注

原创 SSD算法通俗详解

算法简介 算法原理 样本构造 损失函数 使用细节#ssd算法:##简介刘伟在2016年提出,发表在ECCV;是一种通过直接回归的方式去获取目标类别和位置的one-stage算法,不需要proposal;作用在卷积网络的输出特征图上进行预测,而且是不同尺度,因此能够保证检测的精度,图像的分辨率也比较低,属于端到端的训练;input->CNN->Lreg,LclsCNN特征-&g...

2019-03-28 14:41:55 6179

原创 easyPR车牌识别分析与测试结果

简介最近由于项目需要,需要做一个车牌号抓取和识别的功能,于是找到了EasyPR,全称Easy to do Plate Recognition,一个全中文的开源识别项目,基于OpenCV和机器学习实现,支持跨平台,相对来说比较简单,速度也还不错,准确度而言,白天还行,晚上很差,尤其是开启前照灯的情况下非常糟糕,不过还是要感谢作者能够开源给大家分享。下载github地址:https:/

2018-01-27 16:19:12 6132 6

原创 Win7+VS2013+Caffe+Pycaffe+Matcaffe配置与使用

1.Caffe下载github链接:https://github.com/Microsoft/caffe2.配置caffe2.1修改配置项1.进入到windows目录下,找到CommonSettings.props.example文件,复制一份,并重命名2.打开CommonSettings.props,进行下面几处修改1)使用cpu或gpu如果使用cud

2018-01-19 09:26:21 856

原创 手把手教你Dlib+VS2013+Win7配置(详细)

下载文件Dlib下载官网 http://dlib.net/ 只push了最新版本;且最新版本要求vs2015github https://github.com/davisking/dlib 在分支里可以找到各种版本其它 http://dlib.net/files/ 这里有很多版本,还有人脸数据,以及模型文件等cmake下载版本数:需要2.8

2018-01-17 16:42:04 1709 1

原创 hexo:更换电脑,如何继续写博客

1.将你原来电脑上已经配置好并生成的hexo目录拷到你的新电脑上,注意无需拷全部,只拷如下几个目录: _config.yml package.json scaffolds/ source/ themes/将这些目录放到一个目录下,如:hexo/2.在你的新电脑上首先配置hexo环境:安装Node.js3.安装hexo,执行命令: npm install -g hexo4.安装好之后,进入

2017-05-05 11:32:04 9171 12

原创 MXNet:训练自己的数据并做预测

Prepare the input dataBecause the input data’s formt of MXNet is rec,so we must turn the image into the .rec format,as folow:First, we prepare some face images data stored in ‘test_face’ file:step1:bui

2017-04-27 17:22:06 4282 4

原创 MXNet:手把手教你如何用im2rec.py生成rec数据文件

第一步生成list文件第二步生成rec文件第一步:生成list文件首先,在你的MXNet目录下找到im2rec.py的位置:~/mxnet/tools/im2rec.py其次,准备好你要用来生成rec文件的数据集,存放在某个目录下,如:/home/xxx/data/现在,我们可以开始生成list文件了,文件后缀为:.lst python ~/mxnet/tools/im2rec.py –lis

2017-04-27 14:58:18 14712 4

原创 Ubuntu14.04下MXNet安装

Ubuntu1404下MXNet安装安装流程step0 安装基本的依赖包step1 安装CUDAstep2 安装cudnnstep3 下载MXNet源码step4 安装OpenCVstep5 安装MXNet for Pythonstep6 安装Python的相关库step7 测试MXNet是否安装成功参考链接Ubuntu14.04下MXNet安装MXNet是一个轻量化分布式且可

2017-02-15 12:01:40 5408

原创 几句话梳理Linear Regression、Logistics Regression、Softmax Regression之间的共性与区别

先来说说Linear Regression与正态分布高斯分布的关系Linear Regression的基本步骤如何从Linear Regression引出Logistics RegressionLogistics Regression与Softmax Regression总结指数族分布先来说说Linear Regression与正态分布(高斯分布)的关系上过吴恩达老师的机器学习课程的都熟悉

2016-11-03 13:33:06 4603 3

原创 K-Means聚类MATLAB实现

话不多说,直接上代码;%k-meansn = 3000;c = 6;t = randperm(n);x = [randn(1,n/3)-2 randn(1,n/3) randn(1,n/3)+2; randn(1,n/3) randn(1,n/3)+4 randn(1,n/3)]';m = x(t(1:c),:);x2 = sum(x.^2,2);s0(1:c,1) = inf

2016-11-03 11:36:58 2348 3

原创 算法面试题 -- 迷离傍地走

题目问题算法分析Code题目为庆祝强汉文武盛世暨废除和亲七百周年,武后决定拜孙武和王翳对春夏秋冬四官:细君、昭君、探春、文成四人座军事训练。 孙武和王翳分别负责四官的站军姿和踢正步科目;根据军训要求,只有在学会站军姿之后才能进行踢正步训练,但由于四官天资差别,学习时间如下表: 问题问:应该如何安排四官的学习时间,才能够使得所有人都学会上述两项技能的时间最短?算法分析首先我们来看,如果按原始

2016-09-23 17:02:31 1339 4

转载 CocoaPods安装库时出现问题:The dependency `OpenCV (~> 3.0.0)` is not used in any concrete target的解决

ex:The dependency `` is not used in any concrete targetThe dependency `AFNetworking ` is not used in any concrete target1212CocoaPods再遇困难,前几天电脑重装了系统,所有的开发工具就都装了最新的,当我用CocoaPods的时候,出了一个提示,大概就是我的

2016-09-13 18:08:59 835

转载 git pull时出现的常见问题及解决

第1个问题: 解决GIT代码仓库不同步今天在执行git pull时出现:[root@gitserver /data/work/www/rest/lib/Business/Inventory]# git pull  Enter passphrase for key '/root/.ssh/id_rsa':  Updating 70e8b93..a0f1a6c  error: Your l

2016-08-17 16:09:53 8959

转载 基于DL的计算机视觉(11)-- 基于DL的快速图像检索系统

1.引言本系统是基于CVPR2015的论文《Deep Learning of Binary Hash Codes for Fast Image Retrieval》实现的海量数据下的基于内容图片检索系统,250w图片下,对于给定图片,检索top 1000相似时间约为1s,其基本背景和原理会在下文提到。2.基本问题与技术大家都知道,基于内容的图像检索系统是根据图像的内容,在已

2016-08-11 11:59:19 1093

转载 基于DL的计算机视觉(10)-- 详谈CNN

1. 前言前面九讲对神经网络的结构,组件,训练方法,原理等做了介绍。现在我们回到本系列的核心:计算机视觉,神经网络中的一种特殊版本在计算机视觉中使用最为广泛,这就是大家都知道的卷积神经网络。卷积神经网络和普通的神经网络一样,由『神经元』按层级结构组成,其间的权重和偏移量都是可训练得到的。同样是输入的数据和权重做运算,输出结果输入激励神经元,输出结果。从整体上看来,整个神经网络做的事情,依旧

2016-08-11 11:54:37 1080 2

转载 基于DL的计算机视觉(9)--神经网络之动手实践

1.引言前面8小节,算从神经网络的结构、简单原理、数据准备与处理、神经元选择、损失函数选择等方面把神经网络过了一遍。这个部分我们打算把知识点串一串,动手实现一个简单的2维平面神经网络分类器,去分割平面上的不同类别样本点。为了循序渐进,我们打算先实现一个简单的线性分类器,然后再拓展到非线性的2层神经网络。我们可以看到简单的浅层神经网络,在这个例子上就能够有分割程度远高于线性分类器的效果。

2016-08-11 11:52:10 797

转载 基于DL的计算机视觉(8)-- 神经网络是如何训练的

1.训练在前一节当中我们讨论了神经网络静态的部分:包括神经网络结构、神经元类型、数据部分、损失函数部分等。这个部分我们集中讲讲动态的部分,主要是训练的事情,集中在实际工程实践训练过程中要注意的一些点,如何找到最合适的参数。1.1 关于梯度检验之前的博文我们提到过,我们需要比对数值梯度和解析法求得的梯度,实际工程中这个过程非常容易出错,下面提一些小技巧和注意点:使用中心化

2016-08-11 11:48:32 1045

转载 基于DL的计算机视觉(7)-- 数据的预处理、正则化

1. 引言上一节我们讲完了各种激励函数的优缺点和选择,以及网络的大小以及正则化对神经网络的影响。这一节我们讲一讲输入数据预处理、正则化以及损失函数设定的一些事情。2. 数据与网络的设定前一节提到前向计算涉及到的组件(主要是神经元)设定。神经网络结构和参数设定完毕之后,我们就得到得分函数/score function(忘记的同学们可以翻看一下之前的博文),总体说来,一个完整的神经

2016-08-11 11:34:29 1549

转载 基于DL的计算机视觉(6)-- 神经网络

1.神经元与含义大家都知道最开始深度学习与神经网络,是受人脑的神经元启发设计出来的。所以我们按照惯例也交代一下背景,从生物学的角度开始介绍,当然也是对神经网络研究的先驱们致一

2016-08-11 11:31:26 834

转载 基于DL的计算机视觉(5)--理解反向传播

1. 引言其实一开始要讲这部分内容,我是拒绝的,原因是我觉得有一种写高数课总结的感觉。而一般直观上理解反向传播算法就是求导的一个链式法则而已。但是偏偏理解这部分和其中的

2016-08-11 11:29:21 971

转载 基于DL的计算机视觉(4)-- SGD

1. 引言上一节深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器中提到两个对图像识别至关重要的概念:用于把原始像素信息映射到不同类别得分的得分函数/

2016-08-11 11:25:39 934

转载 基于DL的计算机视觉(3)-- SVM和Softmax分类器

1. 线性分类器在深度学习与计算机视觉系列(2)我们提到了图像识别的问题,同时提出了一种简单的解决方法——KNN。然后我们也看到了KNN在解决这个问题的时候,虽然实现起来非

2016-08-11 11:23:19 1674

转载 基于DL的计算机视觉(2)--实现图像分类最简单的方法:KNN

1. 图像分类问题这是人每天自然而然会做的事情,普通到大部分时候,我们都感知不到我们在完成一个个这样的任务。早晨起床洗漱,你要看看洗漱台一堆东西中哪个是杯子,哪个是你的牙刷;

2016-08-11 11:21:05 2753

转载 基于DL的计算机视觉(1)-- Python基础介绍

1.背景计算机视觉/computer vision是一个火了N年的topic。持续化升温的原因也非常简单:在搜索/影像内容理解/医学应用/地图识别等等领域应用太多,大

2016-08-11 11:18:50 1085

原创 循环不变式

如果某个命题初始为真,并且每次更改后仍然保持该命题为真,则若干次更改后该命题仍然为真;

2016-08-04 12:14:28 674

原创 Python学习笔记(三)-- 数据结构

1.元组Tuple元组,其值不可变,因此又叫定值表;相当于我们c中的静态数组,一旦确定了数组长度,不可再往数组中添加元素;定义:T = (1,2,3)引用:与数组一样,下标引用T[0]>>>12.表Listlist,值可以改变,相当于动态数组,可以添加元素和删除;定义:L = [1,2,3,4]引用:1)下标引用:L[1]>>>22)与MATLA

2016-08-02 18:33:52 677

原创 高原数组

定义:若子数组A[from,...,to]满足以下条件:1)A[from] > A[from - 1];2)A[to] > A[to + 1];则称该数组为高原数组,通常用在求一个数组的局部最大;

2016-08-02 11:40:12 787

原创 天平与假币问题

天平与假币假设现在有12枚硬币,已知其中有一枚是假币,但是不知道这枚假币是重还是轻;假如现在给你一架没有砝码的天平,那么你至少需要称量多少次才能找出这枚假硬币。。问题分析随机将12枚硬币等分成3组,每组4个,分别标记为A,B,C;取A和B,分别放在天平的两端(A放左边,B放右边),称重,有以下三种结果:1)如果天平平衡,表明A和B中都没有假币,2)A比B重;3)A比B轻

2016-08-01 16:01:06 1722 4

原创 Manacher算法--求最长回文子串

回文和回文子串回文串:顺着读和倒着读都一样的字符串;回文子串:给定字符串string,若str同时满足以下两个条件:1)str是string的子串;2)str是回文串;那么str就是string的回文子串;引出问题要求求出上面string中最长的那个回文子串;解决方案方案一:枚举中心位置,对奇数位串和偶数位串分开处理;int AllAlgorithms::longest

2016-08-01 11:39:15 973

原创 BM算法

BM算法(Boyer-Moore算法)是由Robert S. Boyer和J Strother Moore于1997年发明的一种字符串匹配算法,该算法在实际实践中会比KMP算法效率高,因为BM算法即使在最坏情况下其时间复杂度也为O(N),BM算法不仅算法效率高,而且构思非常巧妙,也很容易理解,下面我们来举例说明BM算法的运行过程:匹配过程:1)首先,字符串与搜索词头

2016-07-29 19:09:27 3660 1

原创 Python学习笔记(二)-- iPython notebook

什么是iPython notebook?它是一种新兴的交互式数据分析与记录工具,既是一个交互计算平台,又是一个记录计算过程的“笔记本”;它定义了一种全新的计算文件格式,其中包含了代码、代码说明以及每一步的计算输出(包括数值或图片);它是数据分析、科学计算以及交互计算的“利器”;在很多课堂教学以及在线课程上,许多讲师都喜欢用它来给学生演示代码,因此很受大家青睐。iPython n

2016-07-29 10:35:35 5512

原创 Python计算机视觉Learning(一)-- Python图像处理类库--PIL

1.简介PIL(Python Image Library)是一个Python库,它提供了通用的图像处理功能,以及大量有用的基本图像操作,如图像缩放、旋转等,该类库中最重要的模块为Image;PIL库是开源的,点击下载下载链接。2.基本图像操作2.1 图像读取from PIL import Imageimg = Image.open('xxx.jpg');PIL的open()函数可

2016-07-25 19:58:20 920

原创 堆栈

基本特征:后进先出(LIFO)基本操作:压入(push),弹出(pop)实现要点:初始化内存空间,栈顶指针,判空判满缺点:容易造成空间浪费,且易受初始化空间的局限举例:基于数组的堆栈//堆栈typedef struct ZHLStack{ int *array; size_t cap;//容量 size_t top;//栈顶 }ZHLST

2016-07-21 17:34:34 532

原创 模式识别(Pattern Recognition)学习笔记(三十六)-- 动态聚类算法

如果不估计样本的概率分布,就无法从概率分布的角度来定义聚类,这时我们就需要有一种新的对聚类的定义,一般的,根据样本间的某种距离或某种相似性度量来定义聚类,即把相似的或距离近的样本聚为一类,而把不相似或距离远的样本聚在其他类,这种基于相似性度量的聚类方法在实际应用中非常常用,主要可以分为动态聚类法和分层聚类法,本篇博客我们主要来介绍常用动态聚类的方法。动态聚类方法是一中普遍被采用的方法,具有以下

2016-07-21 15:16:04 8190 3

原创 字符串循环左移和右移

问题:假设给定一个字符串S,想要把其前k个字符左移放到字符串的尾部,比如S:beautiful,移动的结果字符串为:utifulbea;这种移动方式就叫做字符串的循环左移,且左移k位。问题分析:假如字符串S包含n个字符,那么明显有,循环左移k位等价于循环左移k+n位,而且循环左移和循环右移其实是一样的,如左移k位就等价于左移n-k位。一般的,遇到这一问题,大多数人会首先想到一位一位

2016-07-06 16:29:10 3412 2

原创 UITableViewCell

cell简介UITableView的每一行都是一个UITableViewCell,通过dataSource的下面方法来对每一行进行初始化:tableView:cellForRowAtIndexPath:其结构如下:UITableViewCell内部有个默认的子视图contentView,contentView是UITableViewCell所显示内容的父视图,可以显示一些辅

2016-06-30 19:09:01 1150

原创 MVC(模型-视图-控制器)的实现

MVC(模型-视图-控制器)是一种设计思想,贯穿于整个ios开发当中,当积累了一定的开发经验时,你就能深刻的领会MVC(模型-视图-控制器)当中的好处和真正含义。MVC(模型-视图-控制器)主要有三个角色:》M:模型数据(Model)》V:视图或界面(View)》C:控制器(Control)MVC(模型-视图-控制器)的明显特征:》View上显示什么内容完全取决于M

2016-06-29 18:44:06 1620

原创 UITableView

什么是UITableView?一些APP中,经常会看到以下界面:这种类似表格数据的样式,在ios中想要实现,最常用的做法就是使用UITableView,UITableView继承自UIScrollView,所以它支持垂直滚动,且性能极佳;UITableView有两种不同的style1)UITableViewStylePlain                        

2016-06-29 17:49:45 649

原创 C++ 提取图像ROI保存到Mat

只要给定待提取ROI的四个角点坐标,利用OpenCV的透视变换计算出变换矩阵,就可以实现提取并保存到Mat;void ls::getROI(cv::Mat &src, float vertices[8],cv::Mat &dst) { float w2 = sqrt(pow(vertices[0] - vertices[2], 2) + pow(vertices[1]

2016-06-29 11:10:26 2236

原创 模式识别(Pattern Recognition)学习笔记(三十五)-- K-L变换与PCA

K-L变换的理论知识K-L变换是除了PCA外的另一种常用的特征提取方法,它有很多种形式,最基本的形式跟PCA类似,它跟PCA的不同在于,PCA是一种无监督的特征变换,而K-L变换能够考虑到不同的分类信息,实现有监督的特征提取。根据随机过程中的KL展开理论,将随机过程描述为无数个正交函数的线性组合,而在模式识别问题中,通常可以将一个样本看成是随机向量的某一次实现结果,所以假设有一d维随机向量

2016-06-23 17:20:16 9584

vgg_generated(48,64,80,120)

opencv编译过程中所需下载的vgg_generated有关的四个文件,48,64,80,120

2018-01-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除